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TEACHING CONTROL SYSTEMS IN ELECTRICAL 

ENGINEERING EDUCATION PROGRAMS

Robert Beloiu*

University of Pitesti, Romania 

ABSTRACT

The Control Systems is a course taught in Engineering Education programs all over 

the world. The knowledge transmitted to engineering students is important for their future 

understanding of other topics as well as for their practical and research activities as 

graduates.  

In Control Systems courses, many authors analyze different kind of systems: 

electrical, mechanical, chemical, etc. Many of these concepts are drawn from very 

complex systems that most of the students are not likely to encounter in their daily 

activities. For instance, very few of them are going to have to design the trajectory of a 

spacecraft that flies in the cosmos. Nor do they need to design the controller to correct the 

trajectory of a boat in the middle of the ocean. The majority of them will end up working 

on industry applications. They need to understand how these installations work, how to 

diagnose and control them. For this reason, undergraduate students need to encounter in 

the universities’ laboratories “hands-on” experimental applications to be capable of 

measuring different characteristics, to see “with their own eyes” the effect of changing 

one variable of the system and to design a controller for that system. Furthermore, they 

need to measure the effect of certain parameter variation in influencing the stability state 

of the system and what does it mean that a system is unstable. 

This chapter presents a “hands-on” approach of the Control System course. This is 

focused on practical implementations of systems and controllers. The described method 

brings to the readers’ attention a method to design applicable systems and mathematical 

representations in order to have a better understanding of the concepts. 

This reader of this chapter needs previous knowledge of Operational Amplifiers and 

Electric Circuits. The author also assumes the readers understand basic concepts of 

Control System theory: transfer function, system stability, root locus graphs, etc.  

                                                       
*
 robertbeloiu@gmail.com; robertbeloiu@yahoo.com. 
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ABBREVIATIONS

OA – operational amplifier 

DC – direct current 

AC – alternative current 

DIY – do it yourself 

1. INTRODUCTION

The Control System course develops necessary competencies for present day engineers. 

In order to analyze one system, a specialist needs to know and understand how it is 

represented. This means the use of the mathematical apparatus that describes its behavior, the 

block schematic representation and analysis, stability and the required means necessary to 

change the systems’ response to different input signals. In order to be able to analyze and 

design an autonomous controlled system, students need to have had previous similar 

experience and practice in a safe environment. Once basic principles are mastered, one can 

move on to a higher level of competences.  

This chapter introduces such a safe environment where students can learn and “make 

mistakes” without the fear of spoiling expensive equipment. The cost of this method is in the 

reach of anyone. Thus, this method can be implemented as “do it yourself”[1] experiments.

2. THE ACTUAL AND PROPOSED METHOD

Most of the present-day manuals and practices are based on mathematical representation 

(in different methods), block schematic representations and usually MATLAB
1
 (or equivalent 

software) simulations. 

Computer simulation is a very powerful tool available to educators, scientists, teachers, 

researchers, engineers, etc. It allows making analysis and studies before a system is released 

into production. Thus, many behaviors can be checked, analyzed and corrected in the 

prototype stage of system development. However, for students, is crucial to be able to make 

connections between theoretical concepts and “real life” experiments. The current practice of 

studying engineering fields is to do experiments in educational laboratories. There is the 

perfect environment to see the link between theory and practice. 

Many textbooks contain quite complicate examples of applications like:  

• Spacecraft 

• Ocean boat 

• Nuclear reactor 

                                                       
1
 MATLAB is a registered trademark of The Mathworks, Inc., 3 Apple Hill Drive, Natick MA 01760-2098. 
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• Satellite 

• Etc. 

These are very good to understand the importance of the course. It is obvious that any of 

the mentioned examples relay on automated behavior control and correction. However, these 

applications cannot be replicated in laboratory conditions in the vast majority of Universities. 

This leads to “simulation only” laboratory practices.

This chapter presents a different approach to “simulation only” Control System 

laboratory. The use of cheap electronic implementations for the mathematical and symbolical 

representations for systems, complex notion (stability, controller design, etc.) is brought into 

the reach of many laboratories or even as “do it yourself” practice.

Recently, hobbyists around the world have access to cheap and easy to use solutions for 

programmable devices, which can provide facile ways to generate signals of various 

waveforms. Furthermore, these systems can be easily used for data acquisition. The method 

covered in this chapter combined with programmable devices leads to integrate and complete 

solutions for system analysis. 

3. THE NECESSARY TOOLS

Covering the proposed applications in this chapter requires the use of several software 

and hardware tools: 

• System simulators. MATLAB is widely used both in research, education and 

engineering communities. However, there are free equivalent tools that can be used 

without the concern of a commercial license, like SCILAB, Octave, etc. [16]. 

• Electronic simulators. Many companies and groups offer electronic simulators. In 

this chapter, simulations were performed using TinaTi from Texas Instruments [2]. 

• Electronic boards. The applications in this chapter are based on a Texas Instruments’ 

electronic board displayed in Figure 1.  

4. ELECTRONIC IMPLEMENTATION OF 

MATHEMATICAL OPERATIONS

The block schematic is a symbolic representation of mathematical equations that describe 

a systems’ behavior. A block schematic indicates the signal flow between the systems’ 

elements. The electronic implementation of block schematic contains schematics that are able 

to process their input signal similar to corresponding mathematical operation. This can be 

done using Operational Amplifiers (OA) networks. The following figures displays few basic 

structures used in this chapter: 
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FoK theory describes how teachers can draw upon their minoritized students’ strengths, 

knowledge and skills from their life experience, to support academic learning. Making 

connections to students’ life experience has powerful potential to enhance school-based 

learning, through making academic concepts more accessible, enhancing the relevance of 

academic learning, and validating the experience, skills, and values of diverse students and 

their families.  

This chapter provides a literature review of pedagogical applications of FoK theory, 

building on Gloria Rodriguez’s in-depth analysis of pedagogical applications of FoK theory. 

Rodriguez sorted teachers’ professional practice into three categories, depending on the 

rationale for the instructional strategies utilized. Applications in different categories differed 

in frequency and depth of connections made to students’ and their families’ FoK, and whether 

the learning was conducted in, or related to, real community settings. Rodriguez’s themes are 

further elaborated and linked to various pedagogical applications in this chapter.  

Unlike Rodriguez’s review of teachers’ pedagogical reasoning, this review focuses on 

what teachers have done – what pedagogical decisions and actions they have taken to 

deliberately apply the FoK concept in their professional practice. For the purposes of this 

review, the guiding research question was: How do different pedagogical applications in 

schools connect to FoK? In this examination of classroom applications of FoK theory, 

findings reveal that teachers’ pedagogical applications of FoK theory can be sorted to reveal 

further themes which can advance knowledge in the field, illuminating possible approaches to 

the work that teachers could take. Themes relate to whether the pedagogical approach draws 

out or draws on FoK, and whose FoK is central.  

This analysis of pedagogical applications of FoK theory may support teachers and teacher 

educators, in their efforts to identify ethical approaches to schooling for minoritized students, 

to work towards social justice aims. 

Chapter 7 - The Control Systems is a course taught in Engineering Education programs 

all over the world. The knowledge transmitted to engineering students is important for their 

future understanding of other topics as well as for their practical and research activities as 

graduates.  

In Control Systems courses, many authors analyze different kind of systems: electrical, 

mechanical, chemical, etc. Many of these concepts are drawn from very complex systems that 

most of the students are not likely to encounter in their daily activities. For instance, very few 

of them are going to have to design the trajectory of a spacecraft that flies in the cosmos. Nor 

do they need to design the controller to correct the trajectory of a boat in the middle of the 

ocean. The majority of them will end up working on industry applications. They need to 

understand how these installations work, how to diagnose and control them. For this reason, 

undergraduate students need to encounter in the universities’ laboratories “hands-on” 

experimental applications to be capable of measuring different characteristics, to see “with 

their own eyes” the effect of changing one variable of the system and to design a controller 

for that system. Furthermore, they need to measure the effect of certain parameter variation in 

influencing the stability state of the system and what does it mean that a system is unstable. 

This chapter presents a “hands-on” approach of the Control System course. This is 

focused on practical implementations of systems and controllers. The described method 

brings to the readers’ attention a method to design applicable systems and mathematical 

representations in order to have a better understanding of the concepts. 
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Figure 1. Electronic board. 

Figure 2. Inverting structure. 

• Inverting structure 

V = ! "#
"$
V%   (1) 

• Non-inverting structure 

V = &1 + "#
"$
'V%   (2) 

• Voltage follower structure 

V = V% (3) 

• Summation structure 
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Figure 3. Non-inverting structure. 

Figure 4. Voltage follower. 

Figure 5. Summator. 
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V = !"#$#% V&& +
#$
#'
V& + #$

#(
V&)*   (4) 

• Difference structure 

V = #(
#%
"#%,#$#',#(

*V& ! #$
#%
V (5) 

Figure 6. Differentiator. 

Figure 7. Integrator. 

• Integration structure 

V = ! &
-.'#$

V&   (6) 

V = ! #'
#$

&
-.'#',&

V& (7) 

• Derivation structure 

V = !sC&R)V& (8) 

There are certain standard signals used in system analysis. They can be generated either 

by electronic hardware or by programmable systems. 

Complimentary Contributor Copy



Teaching Control Systems in Electrical Engineering … 119

Figure 8. Integrator with resistance feed-back. 

Figure 9. Derivator. 

5. HANDS-ON EXAMPLES

“Hands-on” refers to experiments that can be done with available real components 

following certain instructions [3]. Combining this method with signal generation and data 

acquisition it can be observed the behavior of the analyzed system. 

5.1. First-Order Systems 

A first-order system’s general transfer function is indicated in equation  (9): 

G (s) =
 

!"# 
(9) 

As an example, it is considered a random first-order system, whose transfer function is 

displayed in Figure 10 and is indicated in equation  (10): 

G (s) =
 

!# .$
(10) 
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Figure 10. First-order system. 

Figure 11. First-order system with feedback path. 

Figure 12. Step response of the first-order system. 
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Figure 13. Step response of the first-order system with feedback path. 

The block schematic representation of the system is implemented using SCILAB
2

software and is displayed in Figure 10. The transitory response of the considered system is 

indicated in Figure 11. Direct and inverse Laplace's transformation applied to equation  (10) 

leads to the time variable function that expresses the systems’ transient and steady-state 

behavior. This demonstration is not included in this chapter. The references indicate detailed 

information about this mathematical demonstration.  

In order to implement the considered system with OA networks, its’ transfer function has 

to be expanded as in equation  (11): 

G (s) =
 

!" .#
=

$

%

 "
$

%
 .#

(11) 

The expression  (11) indicates an implementation of the system in which it is included a 

feedback loop, whose transfer function is the constant 1.5. This form of the system block 

diagram, displayed in Figure 11, makes easier its electronic implementation. In this 

representation, the integration operation becomes the transfer function of the feed-forward 

path.  

Figure 12 and Figure 13 displays the time response of the same system with a step 

impulse as the input signal. 

Both representations of the first-order system are displayed in Figure 10 and Figure 11 

are presented together in Figure 14. The analysis of Figure 15 leads to the conclusion that 

both representations are equivalent as far as their behavior for the same input signal, which in 

this case is a step signal. 

                                                       
2
 http://www.scilab.org/scilab/about. 
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Figure 14. First-order system with and without feedback path.

Figure 15. Step response of first-order system. 

Figure 16. OA implementation of the first-order system. 
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Figure 17. Step response of the OA implementation of the first-order system. 

Once the first-order system displayed in Figure 10 is implemented with the equivalent 

representation of Figure 14, it can be developed its’ implementation using OA configurations.

Figure 16 displays the implementation of the first-order system with OA. The U2 circuit 

implements both the integration (Figure 7) and the summation (Figure 5) operations. The 

capacitor connected to the feedback loop of the U2, ensures the implementation of the 

integration operations. The transfer function that this configuration implements is indicated 

equation (12): 

G !_"#$%&'($")#*s+ =

,

-./

0,
=

1

23/0,
=

1

2415415674155415/
=

1

2
  (12) 

The U3 circuit is connected as a non-inverting structure (Figure 3) because it needs to 

ensure the multiplication by 1.5. As this value is greater than 1, it can be implemented easier 

with this configuration then with others. In order to obtain the same sign for the output as for 

the excitation signal, it is necessary to use the inverting (Figure 2) structure built with U1. 

The graph displayed in Figure 17 indicates the fact that the evolution of the first-order system 

is similar regardless the implementation solution (Figure 10, Figure 11 and Figure 16).

In conclusion, the configuration displayed in Figure 16 behaves as a first-order system 

described by the transfer function of the equation  (10). 

5.2. Second-Order Systems 

Second-order systems are defined by transfer functions expressed in equation  (13): 

G*s+ =
89
:

2:;!<892;89
: =

89
:

24*2;!<89+;89
: (13) 
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Where: 

  – natural pulsation 

! – amortization factor 

In order to obtain an electronic implementation, it is considered the second-order system 

displayed in Figure 18. In this example " = 3and ! = 0.3. The numeric values of the 

natural pulsation and the amortization factor leads to the transient response of the system for a 

step excitation impulse displayed in Figure 20.  

Figure 18. Second-order system. 

Figure 19. Second-order system with nested loops. 

Figure 19 displays an equivalent representation of the system arranged so that the feed-

forward path includes the integration and constant multiplication operations. The simulation 

of this representation indicated in Figure 21 is similar to Figure 20. Both representations 

indicate the presence of an overshoot and a period of amortization. 

Figure 22 displays both representations of the second order system. The transient 

behavior is indicated in Figure 23.  

Complimentary Contributor Copy



Teaching Control Systems in Electrical Engineering … 125

Figure 20. Transitory response of the second-order system. 

Figure 21. Transitory response of the second-order system with nested loops. 

Figure 22. Second-order system with and without nested loops. 
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Preface xi

This reader of this chapter needs previous knowledge of Operational Amplifiers and 

Electric Circuits. The author also assumes the readers understand basic concepts of Control 

System theory: transfer function, system stability, root locus graphs, etc.  

Chapter 8 - In this empirical investigation, the authors analyzed the relationship between 

school district wealth and instructional expenditures over a 5-year period for Texas school 

districts. School districts were divided into 4 quartiles of school wealth, with quartile 1 being 

the poorest school districts with respect to school wealth and with quartile 4 being the richest 

school districts, again with respect to school wealth. Statistically significant differences were 

revealed for all 5 school years, with the quartile having the lowest average instructional 

expenditures ratio being the upper quartile. Also present in the results was a consistent trend 

for the instructional expenditures ratio to decrease from the second through fourth quartiles. 

Districts in the largest wealth quartile consistently had lower instructional expenditures ratios 

than districts in the other 3 quartiles. Effect sizes were moderate for 4 of the 5 years, and 

small for the most recent year. With the exception of the wealthy school districts, it is 

possible that the overall total amount of instructional expenditure, rather than a ratio of the 

total amount, may make a bigger difference in student achievement. Implications of the 

author’s findings and suggestions for future research are provided.
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Figure 23. Transient response of the second-order system. 

Figure 24. Second-order system OA implementation. 

Using the same procedure as for the 1
st
 order system, Figure 24 displays the electronic 

implementation of the 2
nd

 order system. The nested loops are constructed with different OA 

configurations. Thus, the inner loop contains a non-inverting structure (U3) (Figure 3) while 

the outer loop contains an inverting structure (U4) (Figure 2). This is due to the different 
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signal sign they need to return at the summing point implemented by U2 circuit. The response 

of this configuration, displayed in Figure 25 proves the equivalence between block 

representation of the 2
nd

 order system (Figure 18, Figure 19 and Figure 22) and the OA 

network (Figure 24).

Figure 25. Second-order system transient response. 

5.3. Higher-Order Systems 

The same procedure applies for higher-order systems. For these systems, there is no 

general expression of its transfer function as is the case of 1
st

and 2
nd

order systems. 

For the electronic implementation, similar steps are used with 3
rd

 order systems as 

displayed in Figure 26 and Figure 27. The transient responses of this system are indicated in 

Figure 28 and Figure 29. 

Figure 26. Third-order system. 
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Figure 27. Third-order system with nested loops. 

Figure 28. Transient response of third-order system. 

Figure 29. Transient response of third-order system with nested loops. 
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Figure 30 and Figure 31 demonstrate the equivalence between the two-block 

representations of the 3
rd

order system.  

Figure 30. Third-order system with and without nested loops. 

Figure 31. Transient response of third-order system. 

Figure 32 displays the electronic implementation of the 3
rd

 order system using OA 

networks. The U2, U4 and U6 circuits implement the nested loops. The mathematical 

operations required for the 3
rd

 order system displayed in Figure 27, determines the inverting 

or non-inverting configurations. Figure 33 proves a similar behavior of the presented 

implementations of the 3
rd

order system. 

For a superior-order system applies the same decomposing algorithms of the transfer 

function. Thus the integrative mathematical operations are separated in the transfer function 

expression. Following this algorithm, for the electronic implementation applies the same rules 

as for the 1
st
, 2

nd
 and 3

rd
 order systems previously presented. Analyzing the signal sign after 
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each integration operation determines the nested loops' configurations with inverting and non-

inverting structures.  

Figure 32. Electronic implementation of 3
rd

 order system. 

Figure 33. Transient response of 3
rd

 order system. 

5.4. Systems’ Stability

A linear, time-invariant system is defined as: 

• Stable, if the error of the natural response tends to zero when the time approaches to 

infinity. 
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• Unstable, if the error of the natural response grows when the time approaches to 

infinity. 

• Critical stable, if the error of the natural response is constant or oscillates with the 

same amplitude when the time approaches to infinity. 

There are various methods to determine the stability for a system. In this chapter is 

applied the Routh stability determination criteria described in all referenced manuals [4]. 

For the discussion throughout this chapter, it is considered the transfer function of a 3
rd

order system displayed in equation  (14). In this example, there is a variable parameter K,

which determines the stability of the system. 

G(s) =
 

!"#$!%#&!# 
(14) 

For stability determination based on the Routh criteria, it is used a SCILAB [5] program: 

clc; 

s=%s; 

num=1; 

den=s^3+3*s^2+5*s; 

R=routh_t(num/den,poly(0,'K')) 

H=syslin('c',num,den); 

clf();evans(H,100);sgrid(); 

Table 1. Routh table 

R =

1

-

1

5

-

1

3

-

1

K

-

1

15 - K

------

3

0

-

1

K

-

1

0

-

1

Table 1 indicates the expressions of the Routh table. The analysis of the Routh 

coefficients is indicated in Table 2.  
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Depending on the values of K, the system can be: 

• For  ! (0 ÷ 15) the system is stable. 

• For  > 15 the system is unstable. 

• For  = 15 the system is critical stable. 

The root locus design, displayed in Figure 34 confirms the presence of the three stability 

domains of the system: stability, instability and critical stability. The root locus displayed in 

Figure 34 is drawn when parameter K varies. 

Figure 34. Root-locus representation. 

Applying the same procedures discussed for the 1
st
, 2

nd
 and 3

rd
 order system analysis, the 

electronic implementation of the system is displayed in Figure 35, Figure 37 and Figure 39. In 

these figures, the parameter K gets various values: 7, 15 and 20. The K variation is obtained 

from the values of resistor networks of circuits U7 and U6.  

U7 structure is an inverting configuration (Figure 2), whose amplification factor is: 

"# = $ %&'
%&*
"+ (15) 

 

U6 structure is an inverting configuration (Figure 2), whose amplification factor is: 

V# = ,1 - ./
.&&
2V+ (16) 
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Choosing different resistor combinations, according to  (15) and  (16) results the three 

analyzed situations: 

· For the stable configuration  = 7:

o  !" = 700#$,  !% = 100#$,  & = 600#$,  !! = 100#$

· For the critical stable configuration ' = 15: 

o  !" = 150#$,  !% = 10#$,  & = 140#$,  !! = 10#$

· For the unstable configuration(' = 20: 

o  !" = 200#$,  !% = 10#$,  & = 190#$,  !! = 10#$

Figure 35. OA implementation of the system – ' = 7. 

Figure 36. Transient response of the OA implementation of the system - ' = 7. 
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Figure 37. OA implementation of the system –  = 15. 

Figure 38. Transient response of the OA implementation of the system -  = 15. 

Figure 40 displays the step response of the unstable configuration (Figure 39). The 

amplitude in this situation is growing while the acquisition time arises. In the Control Theory 

textbooks, it is stated that in these situations if no measure is taken, the output signals’ 

amplitude can rise to the point to self-destroying the system. In the OA implementation, the 

amplitude of the output signal is limited when the circuits saturate. In the presented 

implementations, it was used the TL082 OA produced by Texas Instruments. In the data 

sheet, Texas Instruments indicates that the saturation voltage [6] has a typical value  

of ± 13.5 V.  
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Figure 39. OA implementation of the system –  = 20. 

Figure 40. Transient response of the OA implementation of the system -  = 20. 

Figure 41. Unstable saturated system. 
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Figure 41 displays the unstable saturation situation. The values indicated are + 13.45 V 

and –13.44 V. These values are in accordance with the data indicated by Texas Instruments. 

5.5. Controller Design 

The purpose for the Control Systems course is to learn to design compensating structures 

in order to change the undesired behavior of a certain system. There are many situations when 

systems need to have a different behavior than their natural one.  

In Figure 42 is displayed an electronic system whose transitory response is indicated in 

Figure 43. Table 3 indicates the natural parameters of the transitory response of the system. 

These parameters can be directly measured using specific instruments or can be calculated 

from the mathematical expression of the transfer function of the system. 

Figure 42. Original system. 

Figure 43. Transient response of the original system. 
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Table 3. Initial values of the transient response 

Rising time 1.09 [s]

Overshooting time. 1.79 [s]

Overshooting value 35.00 [%]

Settling time for ± 2% error 6.47 [s]

Settling time for ± 5% error 4.85 [s]

The normal function of the system requires a change of the overshooting as indicated in 

Table 4: 

• Overshooting value needs to decrease at 85% from the initial value. 

• Overshooting time needs to decrease at 50% of the original value. 

Table 4. Desired values of the overshooting 

Overshooting time 0.90 [s]

Overshooting value 29.75 [%]

The imposed conditions indicated in Table 4 leads to the desired transient response from 

Table 5. The algorithm that provides these values is classic and is described in the 

bibliographic references. It is not the purpose of this chapter to go over the mathematical 

support of this calculation. 

Table 5. Desired values of the transient response 

Rising time 0.56 [s]

Overshooting time 0.90 [s]

Overshooting value. 29.75 [%]

Settling time for ± 2% error 2.75 [s]

Settling time for ± 5% error 2.07 [s]

Figure 44. Block schematic of the original system with and without nested loops. 
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Figure 45. Transient behavior of the original system. 

The process of controller design consists in: 

• determination of the transfer function of the original system  

• determination of the controller structure 

• determination of the controllers’ parameters.

In the analyzed situation, it is the desire to change the transient behavior only. Therefore, 

a lead compensator is used. 

The electronic structure of the original system leads to the block schematic and transfer 

function displayed in Figure 44. Both representations have a similar transient behavior as it 

was demonstrated in previous paragraphs and is displayed in Figure 45. This behavior 

corresponds to the original parameters of the system mentioned in Figure 43 and Table 3. The 

times in Figure 45 are delayed by 1 regarding the values of Table 3 because the input signal 

has the same delay from the time origin. 

The transfer function of the feed forward path for the system is expressed by the equation 

(17): 

G(s) =
 .!

"#("$%.&)
(17) 

The design algorithms presented in Control System Theory manuals lead to the 

calculation of the transfer function of the controller expressed by equation  (18) and 

displayed in Figure 46. This is a series connected lead compensator [7] that modifies the 

transitory behavior of the output signal. The parameters of the output signal are indicated in 

Table 5. Once these parameters are calculated, the following operation is to choose the 

available components for the RC networks that used in OA network implements as close as 

possible the desired transfer function. Resistor and capacitor values have to be chosen from 

standardized values found in electronic devices catalogs.  
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G(s) =
 .!"(#$%.&)

#$'.%*
(18) 

The electronic schematic of the lead compensator is implemented by the circuits IOP5 

and IOP6 displayed in Figure 49. Choosing the resistors and capacitors for obtaining a 

transfer function of the compensator as close as possible in the expression in equation  (18) 

results the expression in the equation  (19): 

G(s) =
 .+"(#$&.,+)

#$'.&!
(19) 

The normal design procedure is to check the behavior error that results from the 

comparison between the calculated transfer function and the transfer function of the values of 

the chosen elements. This error is displayed in Figure 48. The analysis of the error indicates a 

very slight difference between the two situations and the design procedure stops. In case that 

the difference would be unacceptable, the design procedure continues until the error lowers to 

an acceptable level.

Figure 46. Block schematic of the original system without and with the controller. 

Figure 47. Desired transient behavior. 
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Figure 48. Details of desired transient behavior. 

Figure 49. Compensated system. 

Figure 50. Transient behavior of the original and compesated system. 
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Figure 49 displays: 

• The original system composed by IOP1 – IOP4 and the summer IOP7. 

• The compensator composed by IOP5 and IOP6. 

5.6. Practical Implementation 

In this paragraph, we are going to exemplify some technical systems that can be 

simulated with OA network based electronic schematics. 

5.6.1. DC Motor  

The DC motor is used in a wide type of applications: industrial, automotive, education, 

home appliances, etc. [8]. 

The schematic of a DC separated field excitation (permanent magnet) is displayed in 

Figure 51. This representation indicates the electrical input voltage supply UA[V], armature 

current IA[A], as well as the output mechanical shaft speed Ω[rad/s]. 

The transient behavior of the motor is mathematically described by the equation  (20): 

U = R i (t) + L 
di (t)

dt
+ K!"(t)

J
#$(%)

#%
= m&m' &m* (20) 

Where: 

UA – voltage applied to motor’s terminals. 

IA – armature current  

RA, LA – electric parameters of the motor: armature resistance and inductance 

J, f – mechanical dynamic parameters:  

J – total inertial torque; 

f – viscous friction coefficient 

m – electromagnetic torque 

mf = f·Ω – viscous friction torque 

ms – kinetic friction torque 

Figure 51. DC motor schematic (permanent magnet excitation).
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The Laplace transform applied to (20) under null initial conditions leads to the motors’ 

transfer function expressed by equations (21) and (22): 

U = R I (s) + L sI (s) + K!"(s)

Js"(s) = K!I (s) # f"(s) #m$   (21) 

I (s) = [U # K!"(s)]
1

R + L s

"(s) = [K!I (s) # %&]
'

$*,-
  (22) 

Figure 52 and Figure 53 displays the block implementation of equations  (21) and (22): 

Figure 52. Block schematic of the DC motor. 

Figure 53. Expanded block schematic of the DC motor. 

The expanded block schematic of the DC motor (Figure 53) is a re-arranged form of the 

regular schematic (Figure 52). Its’ analysis indicates what are the numerical values of the 

feed-forward and feed-back paths of the electrical and mechanical implementations of the 

transfer function of the DC motor [8]. Combining both transfer functions leads to the 

equivalent electronic implementation of this motor displayed in Figure 54. 

The model presented in Figure 54 is validated through experimental tests. Table 6 

contains the nominal values indicated on the nameplate of the motor. The values of RA and LA

are obtained either by direct or by experimental measurements of voltage and current through 

the inductor coil with DC and AC voltage supply. The mathematical model of the DC motor 

depends of the mechanical values' J and f. There are various methods described throughout 
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the literature for the laboratory determination of these parameters [9]. Table 7 and Table 8 

displays the experimental determined values for the considered DC motor. 

Figure 54. Electronic implementation of the DC motor model. 

Table 6. Nominal Data for the DC Motor 

Nominal data

Data Value Unit

1 UA 200 V

2 IA 2,0 A

3 nn 1500 rot/min

Table 7. Direct Data for the DC motor measurement 

Measured data

Data Value Unit

1 RA 15,8 W

2 LA 0,41 H

Table 8. Determined Data for the DC Motor 

Measured data

Data Value Unit

1 J 0,29×10-3 kg×m2

2 f 1,48×10-3 Nm/rad/s

Figure 55 displays the dynamic behavior for the real and simulated motor. The electronic 

model of the DC motor has a very little error compared with the real motor. The experimental 

and mathematical analysis proves that the electronic implementation of the motor is following 

the real behavior with an acceptable error. 
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Figure 55. Dynamic behavior of the DC motor. 

5.6.2. Satellite Tracking Antenna 

The Control Systems literature contains various examples of systems that are modeled by 

transfer functions and block schematic. One of such examples is the model of a satellite 

tracking antenna [10, 11]. 

Figure 56. Satellite tracking antena. 
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Figure 57. Electric schematic of the satellite traking antenna. 

Equation  (23) expresses the feed-forward path of the transfer function of the satellite 

tracking antenna [11]. The transfer function indicates a 2
nd

 order system that can be 

implemented as a block schematic both with and without nested loops.  

G(s) =
 !."#

$%&'!'.*'$&'*'
(23) 

Figure 58. Block schematic representation of the satellite tracking antenna. 

Complimentary Contributor Copy



Teaching Control Systems in Electrical Engineering … 147

Figure 59. Dynamic response of the satellite tracking antenna. 

As in this case direct measurements are not an accessible option for regular laboratories, 

the verification of correctness is checked by comparing the mathematical time dependent 

equation of the output signal  (24) of the system with the electronic implementation. The 

function representation is displayed in Figure 60.

  (t) = 0.122 + 2.12 ! 10"# ! e"$  !% &'

&0.124 ! e"$.*$!% (24) 

Figure 60. Graphical representation of the time dependant output signal of the satellite tracking system. 
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The circuit in Figure 61 displays how the transfer function and block schematic 

simulation models of the satellite tracking system are implemented using the presented 

method of this chapter. The output signal of the electronic model (Figure 62) matches exactly 

the block schematic simulation for a step input signal. The error between the electronic model 

and the graphical representation of the time variant expression of the system is minimal. 

Figure 61. Electronic model of the satellite tracking system. 

Figure 62. Dynamic response of the electronic model of the satellite tracking system. 
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CONCLUSION

In this chapter was presented a different approach to the classical method of teaching the 

Control Systems course. 

The simulation of a system supposes that the systems’ equations can be expressed by 

mathematical relations. Transfer function is a very basic and key concept used in teaching this 

course. Based on the transfer function representation it is developed the block schematic of a 

system. Once a system is expressed by its transfer function and the block schematic, it can be 

simulated and studied using available dedicated software tools. 

One problem of the classic teaching methods is the difficulty that appears sometimes, to 

link mathematical concepts and representations to “hands-on” experiments. In addition, 

concepts as stability, instability and critical stability are not easy to ‘see’ and measure in 

regular laboratories. This is because analyzed systems are not always available or in the reach 

of Universities.  

Recently, the Open Source projects like Arduino [12] are welcomed all over the world at 

various educational levels. The Arduino community publishes a very wide spectrum of open-

source applications free available on the Internet. Furthermore, there are important 

multinational companies that produce accessible programmable devices. They have 

educational programs that encourage Universities to apply for donations and competitions. 

Due to their easy access, the user community developed ‘Arduino-like’ programming

environment [13]. 

There are some particular applications that are very useful for the proposed approach: 

• Signal generation [14] 

• Data-Acquisition [15] 

The possibility of easy access to signal generation and data acquisition for general “DIY” 

projects combined with the presented methodology, makes the Control System course 

available for study inside, but most interesting outside University laboratory. The 

implementation of block schematics and transfer function leads to the possibility of studying 

control theory concepts outside the Universities’ walls.

The impact of this approach is that just as open-source electronic and software tools 

captured many hobbyists, the possibility of cheap experiments could lead to better 

understanding of complicate concepts of control theory. 

A different benefit from this approach is that stands could be brought on the educators’ 

experimental table with distinct possibilities of changes. The DC model presented in 

paragraph 0 can implement diverse motor models by changing only cheap elements (resistors 

and capacitors). This allows the teachers to design various applications at a very low price. In 

a practical laboratory course, a group of students can be split and work on the same 

application at the same time, compare the results and share similar experiences. Furthermore, 

the teacher might choose to split a group of students and have them work in smaller teams on 

different applications. 

OA network simulation of complex systems can be also interesting for industrial 

applications. There are times when very complicate systems need to be studied before mass 

production. In this situation different internal signals of the system might have a complicate 
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waveform that is difficult to be expressed by mathematical relations. If the control of such a 

system supposes analyzing of an unusual signal, and the decision needs to be based on certain 

characteristics, such a signal can be measured and acquired from the electronic model of that 

system covered throughout this chapter. 
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