COURSE SYLLABUS Road Vehicle Dynamics UP.02.DAP.1.O.21.11-AI

1. Program	information
------------	-------------

1.1	Higher education institution	cation institution University of Pitesti		
1.2	Faculty	Mechanics and Technology		
1.3	Department	Automobiles and Transport		
1.4	Field of studies	Automotive Engineering		
1.5	Level of education	Master		
1.6	Program / Qualification	Automotive Engineering for Sustainable Mobility		
2.	Discipline information			
2.1	Name of discipline	Road Vehicle Dynamics		
2.2	Instructor of the lecture activities	TABACU Ştefan		

NEAGU Elena

2.6

Type of

evaluation

The discipline

regime

Ο

2.7

Ε

studies 3. Estimated total time

Year of the

2.3 Instructor of the lab activities

3.1 Number of hours per week	3	3.2	lecture	2	3.3	lab	1
3.4 Total hours of the Coursesyllabus	42	3.5	lecture	28	3.6	lab	14
Distribution of the time allocated to the individual study						ore	
Study by handbook, course support, bibliogr	aphy and	notes					30
Additional documentation in the library, on specialized electronic platforms and in the field						30	
Preparation of seminars / laboratories, topics, reports, portfolios, essays						40	
Tutorial						4	
Examinations						4	
Other activities							

3.7	Total hours of individual study	108
3.8	Total hours per semester ²	150
3.9	Number of credits allocated to the	6
	discipline	İ

2.5

Semester

Prerequisites (where applicable)

4.1	Curriculum	Not applicable
4.2	Skills	Mathematics, Mechanics, Internal Combustion Engines

5. Conditions(where applicable)

5.1	for the lecture	Classroom equipped with board, video projector, projection screen, computer
5.2	for thelab	Board, computer, lab equipments

6. Specific skills acquired

Professional skills	Application of the principles and methods of the exact sciences and of nature in the construction of physical-mathematical models for simulating the functioning of vehicles. Use of appropriate criteria and methods to identify the correspondence of concepts, theories, and models in the field of automotive engineering with the real systems to which they refer. Developing professional projects by the consistent use of theories and methods specific to road vehicles.
transversal skills	Execution of professional tasks according to the specified requirements and within the required deadlines, following a predetermined work plan and under qualified guidance. Easy integration within a group, assuming specific roles and achieving good communication in the group. Achieving personal and professional skills and efficient use of their own resources and modern study tools.

7. Course goal(s)

7.1 The main goal of the discipline	The general objective of the discipline is to improve the knowledge in the field of vehicle
	dynamics.
	Describe, explain-and calculate the forces acting between the tire and the road during the
	operation of a vehicle;
7.2 Specific goal(s)	Identify and verify vehicle function requirements for maneuvers that mainly are either of
	longitudinal, lateral, and vertical.
	Describe design and basic function of the vehicle systems: propulsion, brake, and steering.

8. Contents

8.1.	Lecture	No. hours	Teaching methods	Remarks Resources used
1	Introduction. Short history. Vehicle dynamics.	2	- Lecture	
2	Tires. Tire construction. Tire Size and Load Rating. Terminology and Axis	2	- Exposure with	
2	System.		support material	board. sketches.
	Mechanics of force generation. Tractive properties. Cornering properties.	8	- Explication - Description and exemplification	tables, graphs, sheets,photos, models, video
3	Camber thrust. Aligning moment. Combined braking and cornering. Conicity			
	and ply steer. Durability forces. Tire vibrations.			
	Road loads. Mechanics of Air Flow Around a Vehicle. Pressure Distribution on	6	- The heuristic	projector,
	a Vehicle.		conversation	computer, internet
4	Aerodynamic Forces. Drag Components. Drag Coefficient. Drag. Crosswind		- Debate	compator, internet
	Sensitivity.		- State the problem	
	Rolling resistance. Factors Affecting Rolling Resistance. Typical Coefficients.		-Exercise	

	Total road loads. Fuel Economy Effects.	
5	Dynamic axle loads. Static loads on level ground. Low-speed acceleration.	2
J	Loads on grades.	
6	Power-limited acceleration. Engines. Power Train. Traction-limited	4
0	acceleration. Traction Limits.	
7	Braking performance. Stopping distance. Time to stop. Deceleration with wind	4
′	resistance. Braking forces.	
	TOTAL HOURS	28

8.2.	Lab	No. hours	Teaching methods	Remarks Resources used
1	Principles of vehicle layout.	2	- Lecture - Exposure with	board, sketches,
2	Tire construction.	2	support material - Explication	tables, graphs, photos, models, computer, internet, lab equipment for
3	Tire behavior under static loads.	2	- Description and exemplification	
4	Investigation of the contact patch between the tire and the road.	2	- The heuristic conversation - Debate	the investigation of tire behavior under static loads: lab
5	Investigations on the friction coefficient between the tire and the road.	2	- State the problem -Exercise	equipment for the evaluation of
6	Vehicle function requirements for maneuvers that mainly are either of longitudinal, lateral, and vertical	4	LAUIUIU	friction coefficient.
	TOTAL ORF	14		

Minimal bibliography:

- 1. Tabacu, S, lecture notes;
- 2. Tabacu, S, Tabacu, I., Macarie, T., Neagu E, Dinamica autovehiculelor, Editura Universitătii din Pitesti, 2004;
- 3. Ghiulai, C., Vasiliu Ch, Dinamica autovehiculelor, Editura Didactică si Pedagogică București, 1975;
- 4. Milliken, W., Milliken, D, Race car vehicle dynamics, SAE Inc, 1995;
- 5. Hans Pacejka, Tire and Vehicle Dynamics, Elsevier, 2012;
- 6. Wong, J., Y., Theory of ground vehicles, John Wiley & Sons, 1978;
- 7. Thomas D Gillespie, "Fundamentals of Vehicle dynamics", SAE USA 1992;
- 8. Happian-Smith, J., An Itroduction to the Modern Vehicle Design, SAE International, 2002

Corroboration the contents of the discipline with the expectations of the epistemic community representatives, professional associations and employers in the field related to the program

The skills acquired in this discipline allow the graduates to work in the field of automotive engineering: design, calibration, test, homologation of thermal engines and automobiles. Being a specialized discipline, its purpose is to training students, especially for engineering centers (design, research, development).

10. Evaluation

Activity type	10.1 Evaluation Criteria	10.2 Evaluation methods	10.3 Percentage of the final grade		
10.4 Course	Final evaluation	Written and oral exam	50%		
10.5 Seminar	Involvement in activity throughout the semester	Questions / answers. Individual discussions	20%		
10.6. Work for home	Correct resolution. Quality of presentation	Oral presentation. Individual discussions	30%		
10.6 Minimum standard of performance	- Definition of the vehicle layout				

Date (of filling) 25.09.2019 Instructor (lecture)
Prof.PhD.Eng. **Ştefan TABACU**

Instructor (lab)
Assoc prof.phd.eng. **Elena NEAGU**

Date (of approval) 25.09.2019

Head of department Prof.PhD.Eng.**Adrian CLENCI**

Head of department (DAT) Prof.PhD.Eng.**Adrian CLENCI**