COURSE SYLLABUS Test beds, measurement, and control basics 2023-2024

1. Program information

1.1	Higher education institution	Universitatea Națională de Știință și Tehnologie POLITEHNICA București, Centrul Universitar Pitești
1.2	Faculty	Mechanics and Technology
1.3	Department	Automobiles and Transport
1.4	Field of studies	Automotive Engineering
1.5	Level of education	Master
1.6	Program / Qualification	Automotive Engineering for Sustainable Mobility

2. Discipline information

2.1	Name of discipline					Test beds, measurement, and control basics			
2.2	Instructor of the lecture/course activities			ctivities		Adrian CLENCI			
2.3	Instructor of the lab activities					Adrian CLENCI			
2.4	Year of the studies I 2.5 Semester I			Semester	1	2.6 Type of evaluation E^1 2.7 The discipline regime O , DAP ²			

3. Estimated total time

3.1	Number of hours per week	3	3.2	lecture	2	3.3	lab	1
3.4	Total hours of the Academic Syllabus	42	3.5	lecture	28	3.6	lab	14
Distribution of the time allocated to the individual study (= Nb. of credits x 25 - Total hours of the Academic syllabus = 4 x 25 - 42 = 58 hours)							ore	
Study	y by handbook, course support, bibliogra	aphy and no	otes					20
Addit	ional documentation in the library, on sp	ecialized e	lectronic	platforms and ir	n the field			15
Preparation of seminars / laboratories, topics, reports, portfolios, essays							15	
Tutorial						4		
Examinations						4		
Othe	r activities							
3.7	Total hours of individual study		58	8				
3.8	Total hours per semester (= 3.4 + 3.7)		10	0				
3.9	Number of credits allocated to the	discipline	4	!				

5.8	lotal nours per semester (= 3.4 + 3.7)	100
3.9	Number of credits allocated to the discipline	4

4. Prerequisites (where applicable)

4.1	Curriculum	-
		Mathematics, Physics, Mechanics, Numerical methods, Electrotechnics,
4.2	Skills	Electronics and automatic systems, Vehicle dynamics, Thermodynamics, Automobile's construction, Fuel economy and environment protection, Testing
		and homologation

5. Conditions (where applicable)

5.1	for the lecture/course	Classroom equipped with board, video projector, projection screen, computer
5.2	for the lab	Board, computer, lab equipments, test bench

6. Course goal(s)

6.1 The main goal of the discipline	Development of competences in the field of Automotive Engineering by transmitting to the students the notions related to test beds, measurement, and control basics
6.2 Specific goal(s)	At the end of this course, the student should be able to discuss on this particular subject: the architecture of the test beds used to homologate an automobile, their control and measurements

7.	Contents			
7.1.	Lecture/course	No. of hours	Teaching methods	Remarks Resources used
1	Introduction: automotive industry and sustainable mobility; passenger cars homologation/type approval; legislative regulations regarding chemical pollution and CO_2 emission.	2	Lecture Exposure with	
2	Prerequisites: International System of Units (SI); notions about energy balance; operating area of engine/motor; engine/motor performance	2	support material	Board, sketches,
3	Engine test bench: general layout; types; subsystems and operation; tests and results	4	Explanation	tables, graphs,
4	Roller test bench (chassis dynamometer): general layout; types; subsystems and operation; tuning of the vehicle on the bench; road law; different tests and results	4	Description and exemplification	sheets, photos, models, video
5	Real Driving Emissions (RDE) via Portable Emissions Measurement Systems (PEMS): legislative packages; boundary conditions; validation criteria; pre-, main-, post-test; conformity factor	4	The heuristic computer, internet	
6	Measurement: data acquisition systems; types of signals; characteristics of sensors/transducers (pressure, temperature, flow measurement, gas analysis)	8	Debating	
7	Control basics: ON-OFF, PWM, PID, open and closed loop	4	Case study	
	TOTAL HOURS	28		
7.2.	Lab	No. hours	Teaching methods	Remarks Resources used
1	Engine test bench: operation, control and measurement	6	Explanation Description and exemplification	board,
2	Roller test bench: operation, control and measurement (in collaboration with RTR)	2	The heuristic conversation	sketches, graphs, photos, models,
3	RDE tests via PEMS (in collaboration with RTR)	4	Debating Case study	computer, internet, lab equipment video projector
4	Lab closure	2	Exercising Experiment	video projector
	TOTAL HOURS	14		

Minimal bibliography:

Clenci A – Test beds. Support material

Hughes, T.A. - Measurement and control basics, ISA, 2002

Martyr, A.J., Plint, M.A - Engine testing. Theory and practice, Elsevier, BH, 2007

Bonnick, A. - Automotive Science and Mathematics, Elsevier, BH, 2008

Galindo, E - Chassis Dynamometer Testing, SAE International, 2017

8. Corroboration the contents of the discipline with the expectations of the epistemic community representatives, professional associations and employers in the field related to the program

The skills acquired in this discipline allow the graduates to work in the field of automotive engineering: design, calibration, test, validation, and homologation of passenger cars. Being a specialized discipline, its purpose is training the students, especially for engineering centers (design, research, development, innovation).

9. Evaluation	I
---------------	---

Activity type	10.1 Evaluation Criteria	10.2 Evaluation methods	10.3 Percentage of the final grade	
	Active involvement during the lectures	Questions / answers. Weekly recording	10%	
10.4 Course	Good understanding of the treated subjects and the ability to analyze and synthesize	Written and oral exam	50%	
10.5 Lab	Active involvement during the activity throughout the semester Questions / answers. Individual discussions. Weekly recording		20%	
10.6. Homework	Correct resolution. Quality of Oral presentation. Individual 20%			
10.7 Minimum standard of performance• handling of the units of measure involved in the specific parameters of the discipline • knowledge of the architecture of the test beds presented, of the basics of measurement the structure of the automatic control systems				

Date (of filling)	Instructor (lecture/course)	Instructor (lab)	
28.09.2023	Adrian CLENCI, Professor	Adrian CLENCI, Professor	
Date (of approval)	Director of supplying department	Director of beneficiary department	

Date (of approval) 29.09.2023 Director of supplying department Helene ŞUSTER, ş.l. Director of beneficiary department Helene ŞUSTER, ş.I.