COURSE SYLLABUS Transmission and alternative drivetrains. Hybrid vehicles 2023-2024

1. Program information

1.1	Higher education institution	Universitatea Națională de Știință și Tehnologie POLITEHNICA București, Centrul Universitar Pitești
1.2	Faculty	Mechanics and Technology
1.3	Department	Automobiles and Transport
1.4	Field of studies	Automotive Engineering
1.5	Level of education	Master
1.6	Program / Qualification	Automotive Engineering for Sustainable Mobility

2. Discipline information

2.1	1 Name of discipline					Transmission and alternative drivetrains. Hybrid vehicles				
2.2	2.2 Instructor of the lecture/course activities			ctivities		Adrian CLENCI				
2.3	2.3 Instructor of the lab activities					Adrian CLENCI				
2.4	Year of the studies	Ι	2.5	Semester	1	2.6 Type of evaluation E^1 2.7 The discipline regime O , DAP ²				

3. Estimated total time

3.1	Number of hours per week	2	3.2	lecture	1	3.3	lab	1
3.4	Total hours of the Academic Syllabus	28	3.5	lecture	14	3.6	lab	14
Distr	ibution of the time allocated to the ind	dividual st	udy (= Nb.	of credits x 25 – Total h	ours of the Acad	demic syllabus = 4	x 25 – 28 = 72 hours)	ore
Study	/ by handbook, course support, bibliogra	phy and n	otes					20
Addit	ional documentation in the library, on sp	ecialized e	electronic	platforms and ir	the field			20
Preparation of seminars / laboratories, topics, reports, portfolios, essays						20		
Tutor	ial							8
Exam	ninations							4
Other	r activities							
3.7	Total hours of individual study		72	?				
3.8	Total hours per semester (= 3.4 + 3.7)		10	0				
3.9	Number of credits allocated to the	discipline	4					

.8	lotal nours per semester (= 3.4 + 3.7)	100
.9	Number of credits allocated to the discipline	4

4. Prerequisites (where applicable)

4.1	Curriculum	-
		Mathematics, Physics, Mechanics, Numerical methods, Electrotechnics,
4.2	Skills	Electronics and automatic systems, Vehicle dynamics, Thermodynamics,
7.2	Okino	Automobile's construction, Internal Combustion Engine, Fuel economy and
		environment protection, Testing and homologation

5. Conditions (where applicable)

5.1	for the lecture/course	Classroom equipped with board, video projector, projection screen, computer
5.2	for the lab	Board, computer, lab equipments, test bench

6. Course goal(s)

6.1 The main goal of the discipline	Development of competences in the field of Automotive Engineering by transmitting to the students the notions related to alternative drivetrains
6.2 Specific goal(s)	At the end of this course, the student should be able to discuss on this particular subject: the architecture of the classic, hybrid, and electric drivetrain

¹ E – Exam

² O – compulsory; DAP – deepening discipline

7.1.	Lecture/course	No. of hours	Teaching methods	Remarks Resources used
1	The automobile's evolution. General layout of the automobile. Automobile's performance: power, torque, consumption, pollution, driveability, reliability. Well-to-wheel vs. Tank-to-wheel vs. total life cycle analysis. Legislative regulations regarding chemical pollution and CO_2 emission vs. client expectation	1		
2	The automobile's use. Longitudinal vehicle dynamics: balance of forces while driving. Effect of vehicle parameters on the energy balance (effects of mass, rolling, aerodynamics). Regenerative braking: energy recovery during braking	2	Lecture	
3	 The internal combustion engine vehicle (ICEV): the internal combustion engine and fuel storage (principles of operation and output characteristics) the transmission as an interface between the energy source (the internal combustion engine or the electric motor) and the driving wheels (the energy's user): why does ICEV needs a transmission/gearbox; discrete and non-discrete (continuous) variation of transmission ratio with and without power interruption; manual and automatic gearshift vs. automatic torque and speed conversion 	4	Exposure with support material Explanation Description and exemplification The heuristic	Board, sketches, tables, graphs sheets, photos models, video projector, computer, internet
4	 The battery electric vehicle (BEV): electric machines and electrical storage: principles of operation and output characteristics the transmission as an interface between the energy source (the internal combustion engine or the electric motor) and the driving wheels (the energy's user): why does BEV uses a transmission/gearbox 	3	conversation Debating Case study	
5	The hybrid electric vehicles (HEV): serial hybridization parallel hybridization serial-parallel hybridization power-split hybridization 	4		
	TOTAL HOURS	14		Remarks
7.2.	Lab	No. hours	Teaching methods	Resource
1	Engine test bench vs. Roller test bench (chassis dyno) vs. Real Driving Emissions (RDE) via Portable Emissions Measurement Systems (PEMS)	4	Exposure with support material	board
2	Simulation at the internal combustion engine test bench of the steady movement of a passenger car on the road. Various experimental determinations for this situation and post-processing of the experimental data to outline the energetic and ecologic performance according to speed and load.	4	Explanation Description and exemplification The heuristic conversation Debating	board, sketches, graphs, phot models, computer, internet,
			Debaling	lab equipme
3	Hardware-in-the-Loop (HiL): virtual testing	2	Case study	
3 4		2	Case study Exercising	
	Hardware-in-the-Loop (HiL): virtual testing		Case study Exercising Experiment	video projec

Douglas R. Carroll - Energy efficiency of vehicles, SAE International, USA, 2020

Reza N. Jazar - Vehicle Dynamics. Tehory and Application, Springer, 2008

Rajezsh Rajamani – Vehicle Dynamics and control, Springer, 2006

Stephan Rinderkencht, Philippe Jardin, Arved Esser – Future powertrain technologies, MDPI, 2020

David A. Crolla - Automotive engineering: powertrain, chassis system and vehicle body, Elsevier, 2009

H. Naunheimer, B. Bertsche, J. Ryborz, W. Novak – Automotive transmissions. Fundamentals, selection, design and application, Springer, 2011

A.J. Martyr, M.A. Plint – Engine testing, Elsevier, 2007

Lino Guzzella, Antonio Sciarretta – Vehicle propulsion systems. Introduction to modeling and optimization, Springer, 2005 B.T. Fijalkowski – Automotive mechatronics: operational and practical issues, Springer, 2011

8. Corroboration the contents of the discipline with the expectations of the epistemic community representatives, professional associations and employers in the field related to the program

The skills acquired in this discipline allow the graduates to work in the field of automotive engineering: design, calibration, test, validation, and homologation of passenger hybrid cars. Being a specialized discipline, its purpose is training the students, especially for engineering centers (design, research, development, innovation).

Activity type	10.1 Evaluation Criteria	10.2 Evaluation methods	10.3 Percentage of the final grade
	Active involvement during the lectures	Questions / answers. Weekly recording	10%
10.4 Course	Good understanding of the treated subjects and the ability to analyze and synthesize	Written and oral exam	50%
10.5 Lab	Active involvement during the activity throughout the semester	Questions / answers. Individual discussions. Weekly recording	20%
10.6. Homework	Correct resolution. Quality of presentation	20%	
10.7 Minimum standard of performance	red in the specific parameters of the assic, hybrid and electric drivetrains		

Date (of filling) 28.09.2023 Instructor (lecture/course) Adrian CLENCI, Professor Instructor (lab) Adrian CLENCI, Professor

Date (of approval) 29.09.2023

Director of supplying department **Helene ŞUSTER**, ş.l.

Director of beneficiary department Helene ŞUSTER, ş.l.