COURSE SYLLABUS Engine Calibration 2023-2024

1. Program information

1.1	Higher education institution	Universitatea Națională de Știință și Tehnologie POLITEHNICA București, Centrul Universitar Pitești
1.2	Faculty	Mechanics and Technology
1.3	Department	Automobiles and Transport
1.4	Field of studies	Automotive Engineering
1.5	Level of education	Master
1.6	Program / Qualification	Automotive Engineering for Sustainable Mobility

2. Discipline information

2.1	Name of discipline					Engine Calibration				
2.2	Instructor of the lecture/course activities			ctivities		Miĥai NICULAE				
2.3	Instructor of the lab activities					Mihai NICULAE				
2.4	Year of the studies		2.5	Semester	1	2.6 Type of evaluation E^{1} 2.7 The discipline regime O , DS P				

3. Estimated total time

3.1	Number of hours per week	3	3.2	lecture	2	3.3	lab	1
3.4	Total hours of the Academic Syllabus	42	3.5	lecture	28	3.6	lab	14
Distr	ibution of the time allocated to the ind	dividual st	udy ^{(= 3.9}	x 25 - 3.4 = 5 x 25 - 42	= 83 hours)			ore
	y by handbook, course support, bibliogra							25
Addit	ional documentation in the library, on sp	ecialized e	lectronic	platforms and ir	n the field			25
Prepa	aration of seminars / laboratories, topics	, reports, p	ortfolios,	essays				30
Tutor	ial							-
Exan	ninations							3
Othe	r activities							
3.7	Total hours of individual study		8	3				
3.8	Total hours per semester (= 3.4 + 3.7)		12	5				
3.9	Number of credits allocated to the	discipline	5					

3.8	l otal hours per semester (= 3.4 + 3.7)	125
3.9	Number of credits allocated to the discipline	5

4. Prerequisites (where applicable)

4.1	Curriculum	-
		Mathematics, Chemistry, Physics, Mechanics, Numerical methods, Vehicle
4.2	Skills	dynamics, Thermodynamics, Electronics and automatic systems, Automobile's
		construction

5. Conditions (where applicable)

5.1	for the lecture/course	Classroom equipped with board, video projector, projection screen, computer
5.2	for the lab	Board, computer, lab equipments, test bench

6. Course goal(s)

6.1 The main goal of the discipline	Development of competences in the field of Automotive Engineering by transmitting to the students the notions related to the engine calibration (ignition, injection, turbo, EGR, exhaust after-treatment)
6.2 Specific goal(s)	At the end of this course, the student should be able to discuss on this particular subject: the structure of an automatic system (sensors-ECU-actuators), listing the sensors and actuators used for the engine control, the main types of control (PWM, PID, closed and open loop), the main strategies used to control the AFR, the ignition, the boost pressure and exhaust aftertreatment.

¹E−Exam ² O – compulsory; DSI – synthesis discipline

7.1.	Lecture/cours	5e	No. of hours	Teaching methods	Remarks Resources used
1	consumption, p regulations rega Roller test ben	stion engine. Evolution. Various qualities/performance: power-torque, pollution, driveability, reliability. Various compromises. Legislative arding chemical pollution and CO ₂ emission. Engine test bench vs. ch (chassis dyno) vs. Real Driving Emissions (RDE) via Portable surement Systems (PEMS)	6		
2	actuators struct	stion engine seen as an automatic control system: sensors-ECU- ture, open/closed loop control, on-off/PWM control, PID controller, tion, mapping, physical sensors vs. virtual sensors, interpolation etc.	6	Lecture Exposure with support material Explanation Description and exemplification The heuristic conversation	Board, sketches, tables, graphs, sheets, photos, models, video projector, computer, internet
3	Sensors (fund (commands): ig quantitative lam TWC efficiency; control. Various recognition, col etc. Intersystem thermal state/e	ngine control. Composition of the injection and ignition control system. amental parameters, correction parameters). Actuators/controls inition, fuel pump, injection, idle adjustment. Pollution: qualitative & ibda probe; TWC; deNOxCat; GPF; closed loop control at $\lambda = 1$ vs. catalytic post-treatment at $\lambda \neq 1$; gasoline vapor re-aspiration; EGR is strategies: torque structure (slow loop vs. fast loop), cylinder 1 d start, TWC light-off, anti-knocking, "unlooping", OBD (limp-home) n links: ECU (injection + ignition) \leftrightarrow anti engine starting, engine electric fan working regime, deceleration, VVA/VVT, A-C, ESP, box, Assisted steering.	8		
4	Sensors (fund (commands): i preheating glow torque structure regeneration of ignition) ↔ and	nition engine control. Composition of the injection control system. amental parameters, correction parameters). Actuators/controls njection (splitting and phasing), air loop (EGR, overcharging), plugs. Depollution (DOC, DPF, NOxTrap, SCR). Various strategies: , cold starting, noise reduction caused by self-ignition, DOC light-off, DPF (active / passive), OBD etc. Intersystem links: ECU (injection + ti engine starting, engine thermal state/electric fan working regime, npartment heating, deceleration, A-C, ESP, Automatic gear box,	8	Debating Case study	
	Assisted steerin	g.			
	Assisted steerin	g. TOTAL HOURS	28		
7.2.	Assisted steerin		28 No. hours	Teaching methods	Remarks Resources used
7.2.		TOTAL HOURS Electronic ignition and injection management system: identification of all components (sensors, actuators) using different engines;	No.	methods Exposure with support material	Resources
		TOTAL HOURS Electronic ignition and injection management system: identification	No. hours	methods Exposure with support material Explanation Description and exemplification The heuristic conversation Debating	board, sketches, graphs, photos models, computer, internet,
1	Lab Prerequisites	Electronic ignition and injection management system: identification of all components (sensors, actuators) using different engines; correlation with the aftertreatment systems of engines Simulation at the engine test bench of the steady movement of a passenger car on the road. Various experimental determinations for this situation: indicating diagram, hourly fuel consumption, λ and pollutant emissions before and after TWC, measuring the temperature of exhaust gases at various points, upstream of TWC. Post-processing of experimental data to obtain the following: CoV, imep, bmep, p', HR, RoHR, isfc, bsfc, ni, ne, nm, mc(cc), ma(cc), Cfp,	No. hours 2	methods Exposure with support material Explanation Description and exemplification The heuristic conversation Debating Case study	board, sketches, graphs, photos models, computer, internet, lab equipmen
1	Lab Prerequisites Spark advance	Electronic ignition and injection management system: identification of all components (sensors, actuators) using different engines; correlation with the aftertreatment systems of engines Simulation at the engine test bench of the steady movement of a passenger car on the road. Various experimental determinations for this situation: indicating diagram, hourly fuel consumption, λ and pollutant emissions before and after TWC, measuring the temperature of exhaust gases at various points, upstream of TWC. Post-processing of experimental data to obtain the following: CoV, imep, bmep, p', HR, RoHR, isfc, bsfc, nji, ne, nm, mc _(cc) , ma _(cc) , Cr _{ip} , C _{OTp} , nu	No. hours 2 4	methods Exposure with support material Explanation Description and exemplification The heuristic conversation Debating	Besources used board, sketches, graphs, photo models, computer, internet, lab equipment
1	Lab Prerequisites Spark advance Strategies for th various points, u	Electronic ignition and injection management system: identification of all components (sensors, actuators) using different engines; correlation with the aftertreatment systems of engines Simulation at the engine test bench of the steady movement of a passenger car on the road. Various experimental determinations for this situation: indicating diagram, hourly fuel consumption, λ and pollutant emissions before and after TWC, measuring the temperature of exhaust gases at various points, upstream of TWC. Post-processing of experimental data to obtain the following: CoV, imep, bmep, p', HR, RoHR, isfc, bsfc, ni, ne, nm, mc(cc), ma(cc), Cfp, Cofp, nu sweeping, knocking (kp-pk) and experimental data post-processing e fast TWC light-off (monitoring the temperature of exhaust gases at	No. hours 2 4 2	methods Exposure with support material Explanation Description and exemplification The heuristic conversation Debating Case study Exercising	Besources used board, sketches, graphs, photos models, computer, internet, lab equipmen
7.2. 1 2 3 4 5	Lab Prerequisites Spark advance Strategies for th various points, u "Unlooped" open	TOTAL HOURS Electronic ignition and injection management system: identification of all components (sensors, actuators) using different engines; correlation with the aftertreatment systems of engines Simulation at the engine test bench of the steady movement of a passenger car on the road. Various experimental determinations for this situation: indicating diagram, hourly fuel consumption, λ and pollutant emissions before and after TWC, measuring the temperature of exhaust gases at various points, upstream of TWC. Post-processing of experimental data to obtain the following: CoV, imep, bmep, p', HR, RoHR, isfc, bsfc, η i, η e, η m, mc _(cc) , ma _(cc) , Cf _p , Cofp, η u sweeping, knocking (kp-pk) and experimental data post-processing e fast TWC light-off (monitoring the temperature of exhaust gases at upstream of TWC)	No. hours 2 4 2 2 2 2	methods Exposure with support material Explanation Description and exemplification The heuristic conversation Debating Case study Exercising Experiment Computer aided	board, sketches, graphs, photos models, computer,

RTR, DE-MC – Engine calibration. Course support in PowerPoint form (electronic) RTR, DE-MC – Engine calibration. Course support in PowerPoint form (electronic) Heywood, B.J. – Internal Combustion Engine Fundamentals, McGraw-Hill, 1988 Guzella, L., Onder, C.H. – Introduction to modeling and control of internal combustion engine systems. Springer, 2010 Denton, T. - Advanced automotive fault diagnosis, Elsevier, 2006

8. Corroboration the contents of the discipline with the expectations of the epistemic community representatives, professional associations and employers in the field related to the program

The skills acquired in this discipline allow the graduates to work in the field of automotive engineering: design, calibration, test, homologation of thermal engines and automobiles. Being a specialized discipline, its purpose is training students, especially for engineering centers (design, research, development, innovation).

9. Evaluation

Activity type	10.1 Evaluation Criteria	10.2 Evaluation methods	10.3 Percentage of the final grade		
	Active involvement during the lectures	Weekly recording	10%		
10.4 Course	Good understanding of the treated subjects and the ability to analyze and synthesize	Written and oral exam	50%		
10.5 Lab	Active involvement during the activity throughout the semester	Questions / answers. Individual discussions. Weekly recording	20%		
10.6. Homework	Correct resolution. Quality of presentation	Oral presentation. Individual discussions	20%		
 10.7 Minimum handling of the units of measure involved in the specific parameters of the course knowledge of the structure of the automatic control systems knowledge of the sensors and actuators used to control the engines 					

Date (of filling) 28.09.2023

Instructor (lecture/course) Mihai NICULAE, Dr. Instructor (lab) Mihai NICULAE, Dr.

Date (of approval) 29.09.2023 Director of supplying department Helene ŞUSTER, Ş.I.dr.

Director of beneficiary department Helene ŞUSTER, Ş.I.dr.