INTERNAL COMBUSTION ENGINE AND THE SUSTAINABLE ROAD MOBILITY (?

Adrian CLENCI, prof. habil. dr. ing. DEPARTMENT AUTOMOBILES AND TRANSPORT Mircea OPREAN, prof. dr. ing. DEPARTMENT OF ROAD VEHICLES

UNIVERSITY CENTRE OF BUCHAREST UNIVERSITY CENTRE OF PITESTI NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY "POLITEHNICA"

Fuel Economy Safety and Reliability of Motor Vehicles The 33rd SIAR International Automotive and Transport Engineering Congress The 10th ESFA Congress

ESFA 2023

University of Pitești (now part of the UNSTPB) Department Automobiles and Transport - Tradition and academic excellence

Brief retrospective

- 1968: First Dacia vehicle produced in Pitești
- 1969: The Institute of Sub-Engineers is established at UPIT (BAC+3)

- 1977: "Road Vehicles" specialization at UPIT (BAC+5)
- 2005: The Bologna process begins \rightarrow "Road Vehicles" (BAC+4)
- * 2012: Automobiles Chair \rightarrow Department Automobiles and Transport

The only academic entity in Romania that offers university studies in the field of Automotive Engineering, in all three forms accredited according to Bologna procedures (LMD)

• 2023: 43 graduation classes of "Road Vehicles" (BAC+5)

"L'avenir est un présent que nous fait le passé" André Malraux

NATIONAL UNIVERSITY of SCIENCE AND TECHNOLOGY "POLITEHNICA" University Centre of Pitești Department Automobiles and Transport - Tradition and academic excellence

Adrian CLENCI – short biography

- 1996: Automotive Engineering degree, University of Pitești
- 1996 1998: engine design engineer, CESAR Automobile DACIA

- 1998 present: junior assistant, assistant, lecturer, senior lecturer, habilitation, full professor, University of Pitesti
- 2003: PhD in Mechanical Engineering "VCR S.I. engine", University "Transilvania" of Braşov
- 2007 present: trainer within Renault Romania (mathematics for engineers, mechanics, internal combustion engines, test beds)
- 2008 2020: associated researcher at Conservatoire National des Arts et Métiers Paris
- 2008: invited professor at Institut Supérieur de l'Automobile et des Transports, France
- 2012: invited researcher at Conservatoire National des Arts et Métiers Paris, France
- 2018: invited professor at Université de Valenciennes et du Hainaut-Cambrésis, France

Hirsch indexes : WoS: Scopus: Research Gate: Google Scholar:

7 (58 publications, cited by 260 documents)
7 (30 documents, cited by 297 documents)
8 (113 documents, cited by 442 documents)
10 (99 documents, cited by 573 documents)

https://orcid.org/0000-0003-1101-2720

https://www.upit.ro/ro/cercetare-stiintifica

University « Politehnica » of Bucharest (now part of the UNSTPB)

Department of Road Vehicles - Tradition and academic excellence

Brief retrospective

- 1924 1929: Annual lecturing by Aurel Persu at "Politehnica" on "Automotive Technology"
- 1940 1942: Lecturing by Constantin Ghiulai at "Politehnica" on "Automobiles" and "Automobiles and Tanks"
- 1948: The 1st higher level automobile course in Romania has been published at UPB Publishing House by prof. Constantin Ghiulai
- 1950: "Autobuzul" plant in Bucharest ("Rocar" after 1990)
- 1959: Faculty of Transports at UPB
- 1960: The Automobiles Chair is created.
- 1969: The Automobiles specialization is created (BAC+3)
- 1972: The Automobiles Chair became The Road Vehicles Chair + starting of "Road Vehicles" specialization at UPB (BAC+5)
- 2005: The Bologna process begins \rightarrow "Road Vehicles" (BAC+4)
- 2012: Road Vehicles Chair → Department of Road Vehicles
- 2023: 48 graduation classes of "Road Vehicles" (BAC+5)

"L'avenir est un frésent que nous fait le fassé" André Malraux

NATIONAL UNIVERSITY of SCIENCE AND TECHNOLOGY "POLITEHNICA" University Centre of Bucharest Department of Road Vehicles - Tradition and academic excellence

Mircea OPREAN – short biography

- 1972: Automotive Engineering degree, University Politehnica of Bucharest
- 1972 present: junior assistant, assistant, lecturer, senior lecturer, professor, University Politehnica of Bucharest
- 1984: PhD in Mechanical Engineering, University Politehnica of Bucharest
- Author of 13 books
- Author of 77 scientific papers (WoS, Scopus, etc)
- Director of 37 research contracts

http://autovehiculerutiere.pub.ro/

Hirsch indexes : WoS: Scopus: Research Gate: Google Scholar:

2 (8 publications, cited by 23 documents)
2 (17 documents, cited by 40 documents)
5 (40 documents, cited by 78 documents)
5 (39 documents, cited by 120 documents)

https://www.researchgate.net/profile/Mircea-Oprean

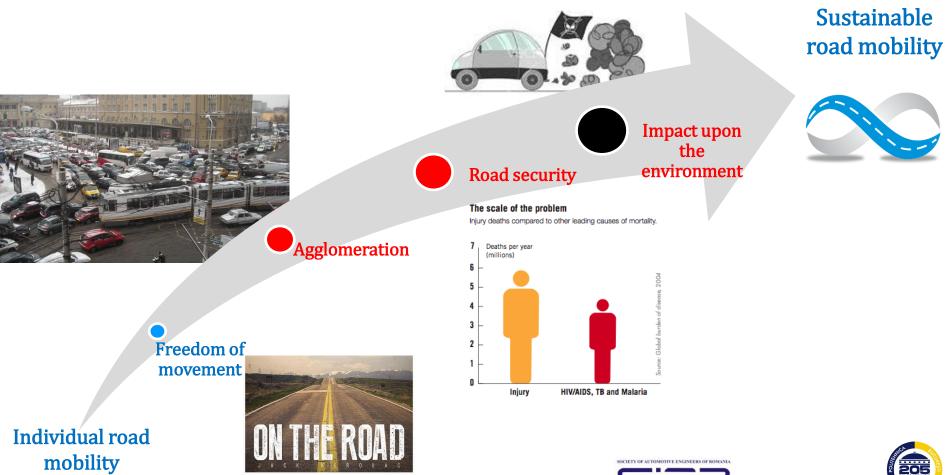
STRUCTURE OF THE PRESENTATION

LEGISLATIVE CONTEXT

INTERNAL COMBUSTION ENGINE

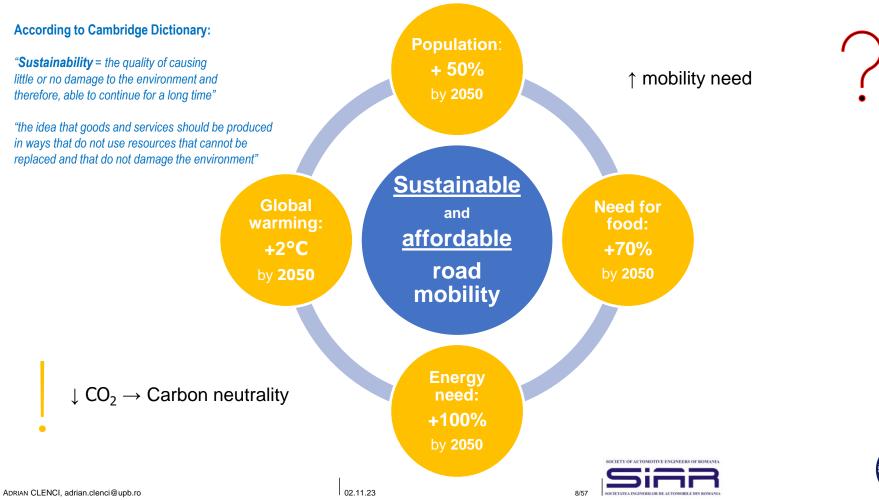
CONCLUSIONS

Individual Road Mobility


SUSTAINABLE

SOCIETY OF AUTOMOTIVE ENGINEERS OF ROMANIA

INTRODUCTION – Individual road mobility: stakes and challenges



7/57

SOCIETATEA INGINERILOR DE AUTOMOBILE DIN ROMANIA

ADRIAN CLENCI, adrian.clenci@upb.ro

INTRODUCTION – Individual road mobility: stakes and challenges

INTRODUCTION – Technological development vs. Constraints

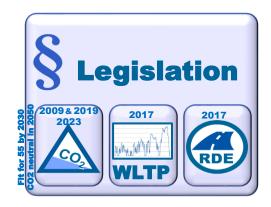
to ensure an affordable & sustainable road mobility ?

Transmission Electrification Vehicle ICE

9/57

Automotive engineering = management of compromise

2017


RDE

ADRIAN CLENCI, adrian.clenci@upb.ro

INTRODUCTION – Technological developments vs. Constraints

PUBLIC PRESSURE WITHOUT PRECEDENT

RISK

STRUCTURE OF THE PRESENTATION

INTRODUCTION

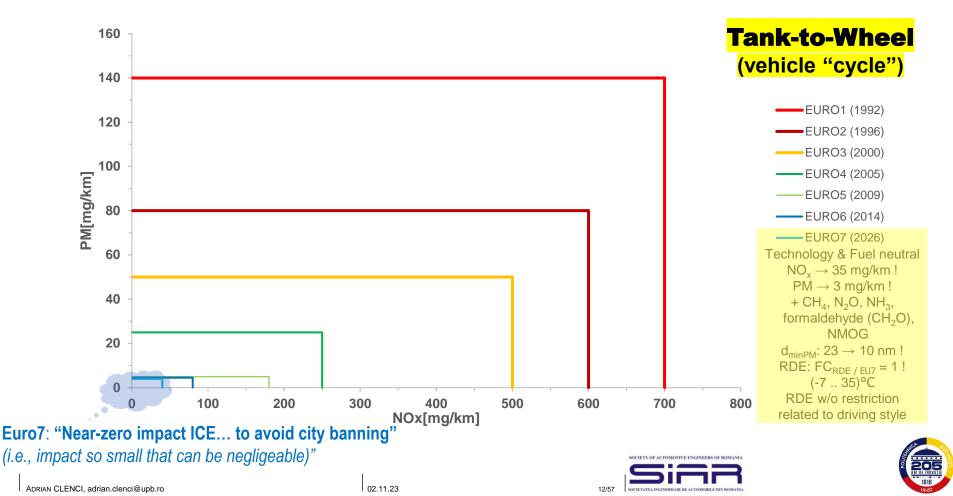
LEGISLATIVE CONTEXT

INTERNAL COMBUSTION ENGINE

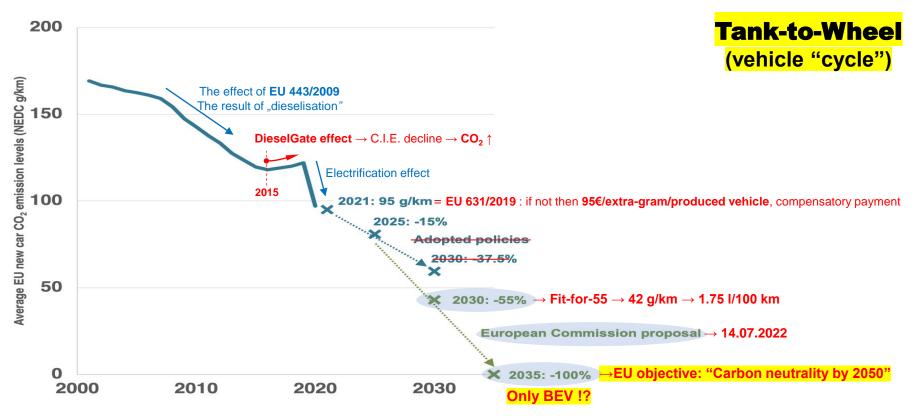
CONCLUSIONS

Individual road mobility

sustainable


SOCIETY OF AUTOMOTIVE ENGINEERS OF ROMANIA

11/57


ADRIAN CLENCI, adrian.clenci@upb.ro

LEGISLATIVE CONTEXT – Pollutants. Evolution

LEGISLATIVE CONTEXT – CO2 emission. Evolution

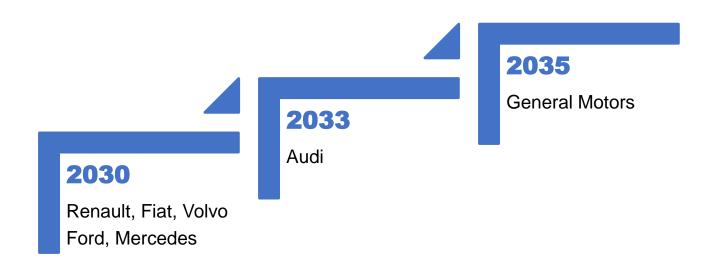
Source: https://theicct.org/the-european-commissions-fitness-program-for-climate-protection-sluggards/

	GWP = Global Warming Potential	Tank-to-Wheel (vehicle "cycle")		
Species	CO ₂ Equivalence Ratio (100-yr GWP)	Typical Emissions (Euro 6d-FINAL, GDI, GPF)	Potential Limit	CO ₂ e
CO ₂	$1g CO_2 = 1g CO_2$	150 g/km*	81g/km (NEDC) Fleet @ 2025	150 g/km
CH ₄	1g CH ₄ ~ 30g CO ₂	~3.5 mg/km	15 mg/km	~0.1 g/km
N ₂ O	$1 \text{ g N}_2 \text{ O} \sim 300 \text{ g CO}_2$	~4 mg/km	10 mg/km	~1.2 g/km

Euro7: Adding N₂O in particular could lead to a significant **increase in CO**₂eq. emissions

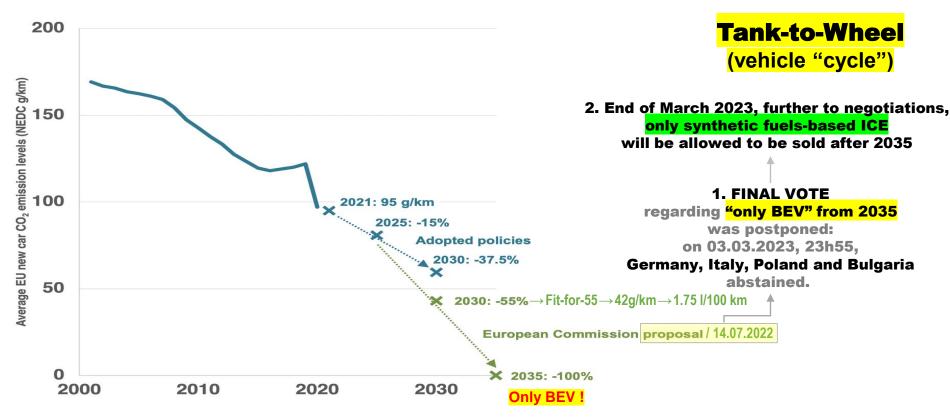
OEMs: considering the investments for electrification, is it really worth the effort ?... **European Council:** we need to relax EU7 to support investments in electrification

14/57

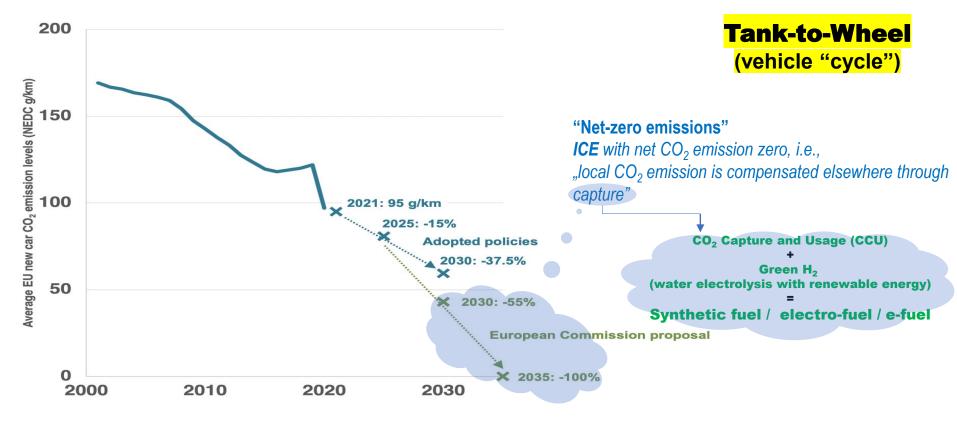

ADRIAN CLENCI, adrian.clenci@upb.ro

Source: Ricardo

LEGISLATIVE CONTEXT – CO2 regulation – Consequences


THE CONSEQUENCE OF THE EUROPEAN PARLIAMENT DECISION FROM 14.07.2022 (-100% CO₂ by 2035): (339 votes in FAVOUR, 249 AGAINST, 24 ABSTENTIONS)

PUBLIC ANNOUNCEMENTS TO MIGRATE TOWARDS 100% BEV (i.e., TOTAL ELECTRIFICATION)...


LEGISLATIVE CONTEXT – CO2 emission. Evolution

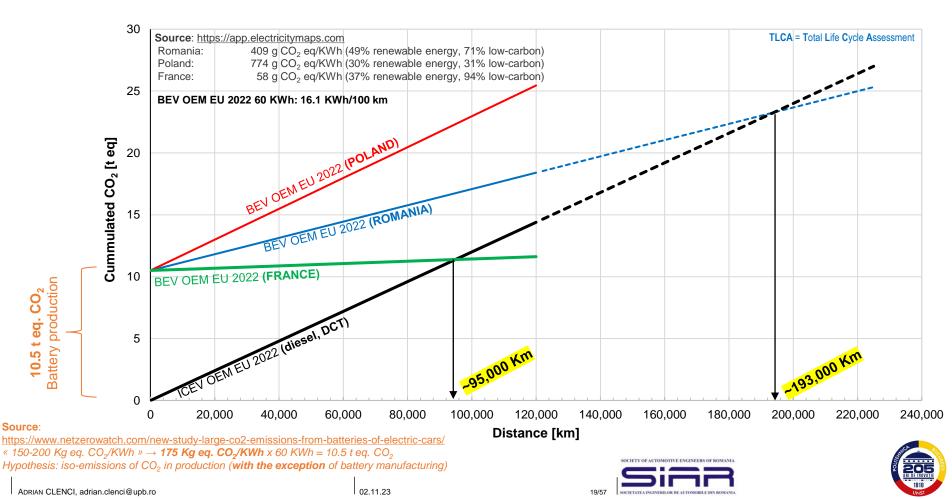
Source: https://theicct.org/the-european-commissions-fitness-program-for-climate-protection-sluggards/

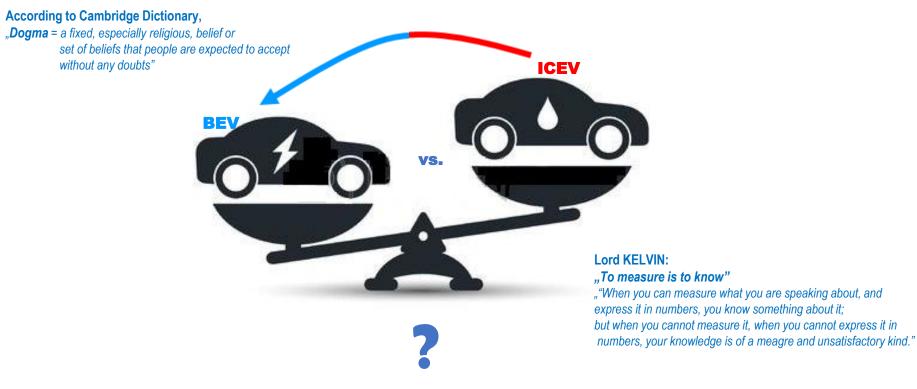
LEGISLATIVE CONTEXT – CO2 emission. Evolution

Source: https://theicct.org/the-european-commissions-fitness-program-for-climate-protection-sluggards/

17/57

ADRIAN CLENCI, adrian.clenci@upb.ro


LEGISLATIVE CONTEXT – CO2 regulation. Europe vs. RoW



LEGISLATIVE CONTEXT – Why only Tank-to-Wheel ? Why not TLCA ?

LEGISLATIVE CONTEXT – All in favor of BEV (?)

LEGISLATIVE CONTEXT – All in favour of BEV (?)

BUT, yet, WHY? Why ONLY about Tank-to-Wheel and ONLY about CO₂?

- Quantification of pollutant emissions associated to electric energy production for BEV ?
- Quantification of pollutant emissions associated to BEV manufacturing ?
- Quantification of pollutant emissions associated to BEV decommissioning/recyling ?

Total Life Cycle Assessment / From Cradle-to-Grave

STRUCTURE OF THE PRESENTATION

LEGISLATIVE CONTEXT

INTERNAL COMBUSTION ENGINE

CONCLUSIONS

Individual road mobility

sustainable

SOCIETY OF AUTOMOTIVE ENGINEERS OF ROMANIA

22/57

ADRIAN CLENCI, adrian.clenci@upb.ro

INTERNAL COMBUSTION ENGINE – Chronology

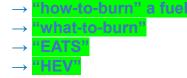
- 1860: The 1st ICE (2 strokes without compression) Etienne Lenoir (BELGIA)
- 1876 : The 1st 4 stroke SIE Nikolaus Otto (GER) si Beau de Rochas (FRA)
- 1893: The 1st 4 CIE Rudolph Diesel (GER)
- 1902: The 1st patent on VVA Louis Renault (FRA)
- 1902: The 1st patent in mechanical charging Louis Renault (FRA)
- 1905: The 1st patent on turbocharging Buchi (Elvetia)
- 1943: The CR system is patented Cummins (USA)
- 1957: The 1st operational prototype of rotative ICE Felix Wankel (GER)
- 1967: The 1st serial application of the Wankel rotary engine Mazda Cosmo (JAP)
- 1968: The 1st CIE introduced on a passenger car Peugeot 204 (FRA)
- 1977: The 1st turbocharged CIE introduced on a passenger car Mercedes 300 SD (GER)
- 1983: The 1st anti-pollution regulation (USA)
- 1986: Emergence of electronic control in the diesel engine Bosch cu BMW524tD (GER)
- 1988: The 1st turbocharged CIE with direct injection on a passenger car– Fiat Croma (ITA)
- 1993: The introduction of **Euro I** anti-pollution regulation
- 1996: The 1st serial application of the GDI Mitsubishi Carisma (JAP)
- 1996: The introduction of **Euro II** anti-pollution regulation
- 1997: The 1st serial application of the high-pressure direct injection CR system– Alfa Romeo 156 (ITA)
- 1999: The 1st GDI engine of an European OEM Renault idE (FRA)
- 2000: The introduction of **Euro III** anti-pollution regulation
- 2001: The 1st throttle-less SIE BMW Valvetronic-Vanos (GER)
- 2005: The introduction of **Euro IV** anti-pollution regulation

INTERNAL COMBUSTION ENGINE – Chronology

2006:	The 1 st serial SIE fuelled either with H_2 or with gasoline (bivalent engine) – BMW Hydrogen 7
2007:	(V12, 6000 cm ³ , 13.9 l gasoline/100 km; 50.0 l H ₂ /100 km; 100 models produced) The 1 st serial application of CIE featuring a specific power greater than 100 CP/l: BMW N47, 1995 cm ³ , 102 hp/l ,
	double turbocharging, $sfc_{min} = 204 \text{ g/KWh}$
2009:	The introduction of Euro V anti-pollution regulation
2012:	Mazda SKYACTIV: a new generation of SIE and CIE, Euro VI, both characterized
	by an identical value of compression ratio ($\epsilon = 14$)
2012:	The 1 st CIE featuring triple turbocharging : BMW N57S, 2993 cm ³ , 127 hp/l
2015:	The introduction of Euro VI anti-pollution regulation
<mark>2015</mark> :	VW « Dieselgate » in S.U.A. + UE : the beginning of ICE's decline 🛞
2016:	The 1 st CIE featuring 4 turbochargers : BMW N57S, 2993cm ³ , 135 hp/l, 760 Nm@(2000-3000) rpm
2017:	The 1 st large series SIE equipped with a VNT (VW 1.5 TSI Miller cycle)
2017:	Introduction of the RDE in the type-approval tests (In-Service Conformity with PEMS)
2018:	Homologation via WLTP (+ RDE) – i.e., giving up to NEDC
2019:	The 1 st serial application of a VCR SIE , ε = 8 – 14 , (VC-Turbo) – Nissan (JAP)
2020:	The 1 st commercial gasoline engine to use compression ignition – SPark Controlled Compression Ignition (SPCCI),
	(Mazda Skyactive-X, $\epsilon = 16.3$, $\lambda = 1.0 - 1.9$)
2027 <mark>(?)</mark> :	The introduction of Euro VII anti-pollution regulation (not earlier than 2027maybe 2029?)
<mark>2035</mark> :	EUROPE: abandoning the ICEV (?)with the except of e-fuels powered ICEV

Stakes ?

- 1. CO_2 emission (GHG) \rightarrow the most challenging !
- 2. Quality of the atmosphere (pollution)



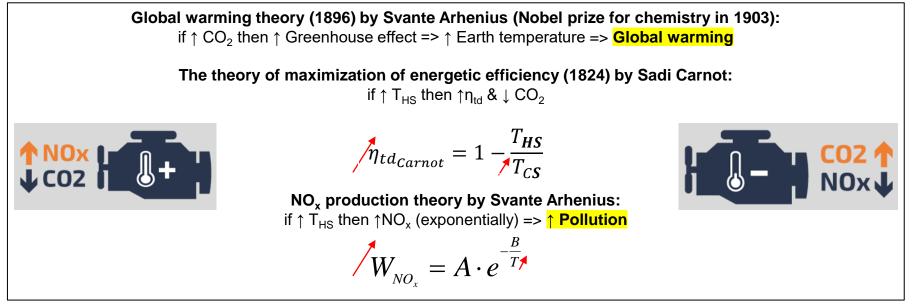
\rightarrow health issues/risks

Sustainable mobility: Efficient and ecologic ICE + Ecologic fuels

- Improvement of ICE energetic and ecologic performance
- Use of fuels with ecologic potential
- Exhaust aftertreatment system
- Electrification of propulsion/hybridization

25/57

SOCIETATEA INCINERII OR DE AUT

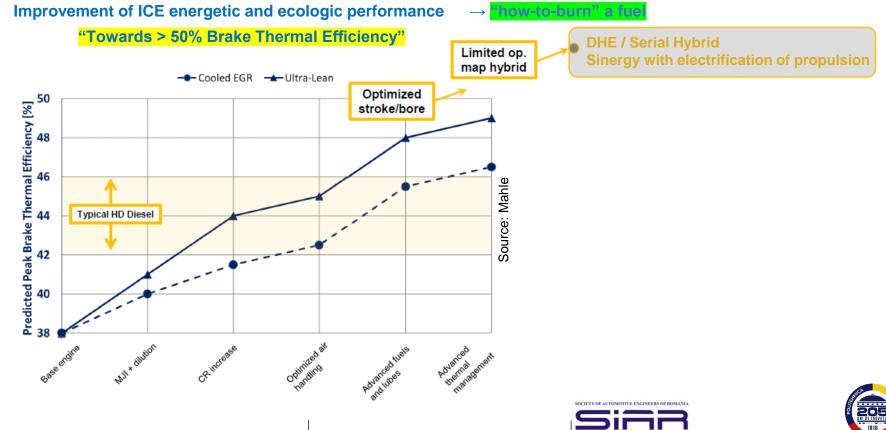


 \rightarrow "how-to-burn" a fuel

26/57

How?

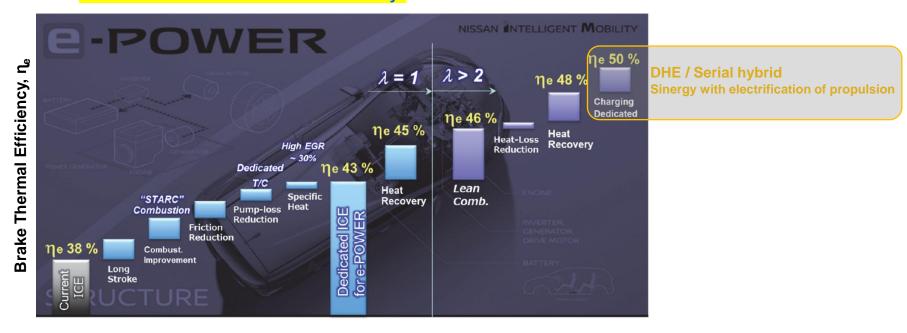
• Improvement of ICE energetic and ecologic performance



 $\textbf{HARDSHIP} \rightarrow \textbf{TRADE-OFF} \ \textbf{/} \ \textbf{COMPROMISE}$

How?

٠


27/57

SOCIETATEA INGINERILOR DE AUTOMOBILE DIN ROMANL

02.11.23

How?

 Improvement of ICE energetic and ecologic performance "Towards > 50% Brake Thermal Efficiency"

→ "how-to-burn" a fuel

ADRIAN CLENCI, adrian.clenci@upb.ro

what-to-burn'

 \rightarrow

How?

Use of fuels with ecologic potential

Theoretical complete combustion reaction (stoichiometric combustion):

$$C_{a}H_{b}O_{c} + \left(a + \frac{b}{4} - \frac{c}{2}\right)(O_{2} + 3,76N_{2}) \rightarrow aCO_{2} + \frac{b}{2}H_{2}O + \left(a + \frac{b}{4} - \frac{c}{2}\right)3,76N_{2}$$

$$\frac{m_{CO2}}{m_{fuel}} = \frac{(12 + 2 \cdot 16) \cdot a}{(12 \cdot a + 1 \cdot b + 16 \cdot c)} = \frac{44}{12 + \frac{b}{a} + 16 \cdot \frac{c}{a}} = \frac{44}{12 + \frac{H}{C} + 16 \cdot \frac{O}{C}}$$

$$1 \text{ kg } C_{8}H_{18} (\sim \text{ gasoline}) \rightarrow 3.64 \text{ kg } CO_{2}$$

$$1 \text{ kg } C_{4}H_{10} (\sim \text{ LPG}) \rightarrow 3.03 \text{ kg } CO_{2}$$

$$1 \text{ kg } C_{4}H_{10} (\sim \text{ LPG}) \rightarrow 2.75 \text{ kg } CO_{2}$$

$$1 \text{ kg } CH_{4} (\sim \text{ CNG/LNG}) \rightarrow 2.75 \text{ kg } CO_{2}$$

$$1 \text{ kg } H_{2} \rightarrow 0 \text{ kg } CO_{2} \equiv -100\% \text{ CO}_{2}$$

$$1 \text{ kg } H_{2} \rightarrow 0 \text{ kg } CO_{2} \equiv -100\% \text{ CO}_{2}$$

ow-carbon fuels

 \rightarrow

How?

• Use of fuels with ecologic potential

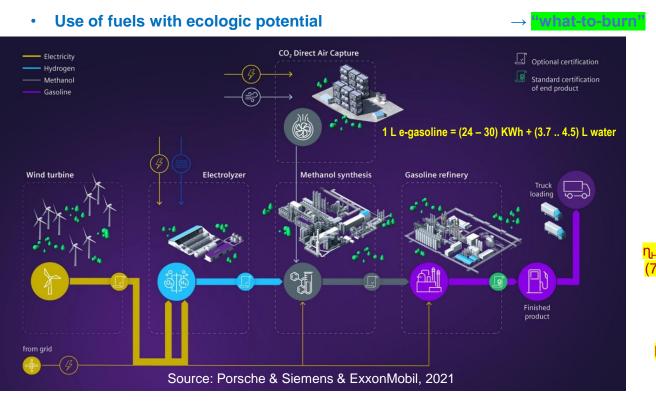
Sustainable Road Mobility with **Methane Gas** @ University Centre of Piteşti (UNSTPB), FEV ECE Romania and RTR by A. Clenci, R. Niculescu, M. Năstase, V. Iorga, Gh. Leasu (UNSTPB), J. Berquez, E. Peillon (FEV), N. Boicea, PhD. R. Popa (RTR)

Digital twins of the CNG fuelled SI engine and chassis - prototypes

First successful firing of the CNG fuelled SI engine prototype on 21st of April 2021

ow-carbon fuels

How?



IEA (International Energy Agency): Worldwide demand of gasoline in 2026 → 25 M barrel/day ⇔ 1.450.875 ML/year (1 barrel = 159 Liters) ⇒ total replacement of fossil gasoline with e-gasoline = 2.638 identical Porsche plants!! tors of **F-T** synthesis (1925) – BTL, used to fuel the war machine of Germany in the 2nd WW

How?

ofuels & Synthetic fuel: 3rd gen. biofuels -fuels 2nd & ✓ Rapid decarbonization (CCU) ✓ Energy independence ✓ Use of existing infrastructure ✓ No more range anxiety $\eta_{wind} = 40 \%, \eta_{sun} = 15 \%$ η_{H2 via AWE} = (60-70) %, η_{H2 via PEM} = (80-85) % $(7.5 .. 11) L H_2O + (46 .. 70) KWh = 1 Kg H_2$ <mark>η _{H2 → CH3OH} = 67 % …</mark> !! Low efficiency !! Well-to-Wheel assessment: ICEV 5 L e-gasoline/100 Km = 135 KWh FCEV Toyota Mirai : 72 KWh **BEV = 22 KWh**

SOCIETY OF AUTOMOTIVE ENGINEERS OF ROMANL

How?

Use of fuels with ecologic potential

The effect of **HVO** using in diesel-powered vehicle @ University Centre of Pitești (UNSTPB), **FEV** ECE Romania and RTR by A. Clenci, R. Niculescu, M. Năstase, PhD M. Oprea (UNSTPB), R. Bercu, J. Berquez (**FEV**), N. Boicea, G. Voicu, Al. Ciucă (RTR)

Biofuels & Synthetic fuels

How?

- Exhaust after-treatment system
- Complying with **EURO 7**:

> Increase size of EATS (+50%) + OBM (Emissions On-Board Monitoring)

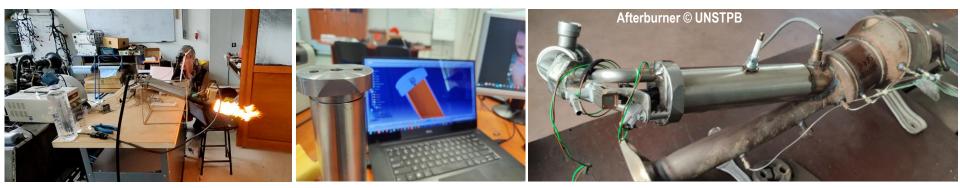
 \rightarrow

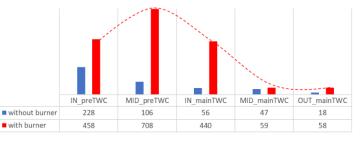
The biggest challenge at (P)HEV-MAS to comply with EURO 7:

- > Fast **TWC light-off** after a cold starting
- > avoiding TWC cooling: « Transition from EV drive to engine assist with cold EATS can lead to "hybrid cough" » Mahle

34/57

SOCIETATEA INCINERII OR DE AUTOMORIJ E DIN




 \rightarrow "EATS"

How?

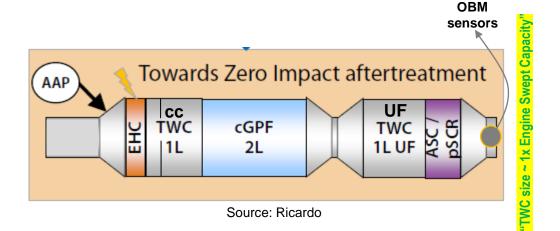
Exhaust after-treatment system

Complying with EURO 7 via using an afterburner @ University Centre of Pitești (UNSTPB) by A. Clenci, B. Cioc, V. Iorga, R. Niculescu, C. Zaharia, Gh. Leasu, PhD. R. Stoica (UNSTPB)

ADRIAN CLENCI, adrian.clenci@upb.ro

02.11.23

How?


C

Exhaust after-treatment system

Comply with **EURO 7**:

➤ example of EATS → "SIE with near-zero impact"

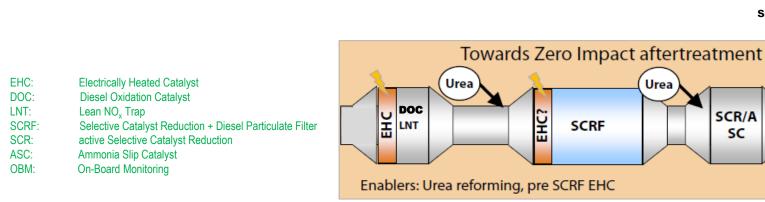
AP:	Auxiliary Air Pump (EATS pre-heating)
HC:	Electrically Heated Catalyst
cTWC:	closed-coupled Three-Way Catalyst
GPF:	coated Gasoline Particulate Filter
JF-TWC:	underfloor Three-Way Catalyst
ASC:	Ammonia Slip Catalyst
SCR:	passive Selective Catalyst Reduction
OBM:	On-Board Monitoring
CF:	Conformity Factor (RDE/EUx limit)

36/57

 \rightarrow "EATS

CF_{NOX} = 0.02, i.e., 1.17 mg/km → • Improvement of SIE ecologic performance Source: AVL

SOCIETY OF AUTOMOTIVE ENGINEERS OF ROMANIA


ADRIAN CLENCI, adrian.clenci@upb.ro

How?

Exhaust after-treatment system ٠

Comply with **EURO 7**:

37/57

 \rightarrow **EATS**

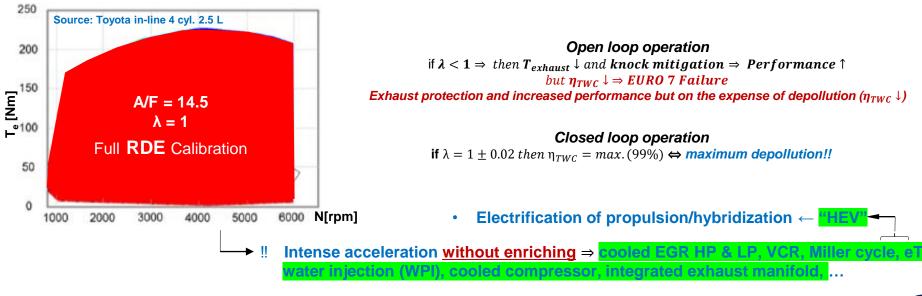
Source: FEV

$CF_{NOX} = 0.125$, i.e., <10 mg/km $\rightarrow \cdot$ Improvement of CIE ecologic performance

SC

OBM sensors

"EHC position depends on warm-up req. incl. shortest urban RDE distance req.)"



SOCIETY OF AUTOMOTIVE ENCINEERS OF ROMAND SOCIETATEA INCINERII OR DE AUTOMORII E DIN ROMANI

How?

Exhaust after-treatment system

The consequence of RDE (Real Driving Emissions) introduction @ SIE : $\lambda = 1$ on all operating area

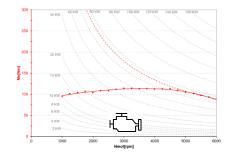
38/57

OCIETATEA INCINERII OR DE AUTO

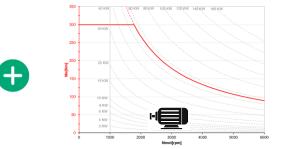
How?

→ "EATS ٠ Exhaust after-treatment system 35 Specific Power IkW λ1 Technology Walk 30 25 BMEP [bar] 160 20 Future **λ1** Capability 15 140 Current production $\lambda 1$ 10 capability 120 5 0 Source: MAHLE 100 1000 2000 3000 4000 5000 6000 7000 8000 0 Engine Speed [rpm] 80 60 40 20 0 HP-EGR Advanced Cooling Ultra High Pressure Dynamic Lambda 1 Baseline Miller Cycle + CR + Optimised MJI Ignition IEM Combustion **Boosting System** System Concepts Injection

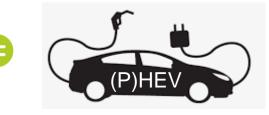
[KW/]]


Specific I

Y1


SOCIETY OF AUTOMOTIVE ENGINEERS OF ROMANIA

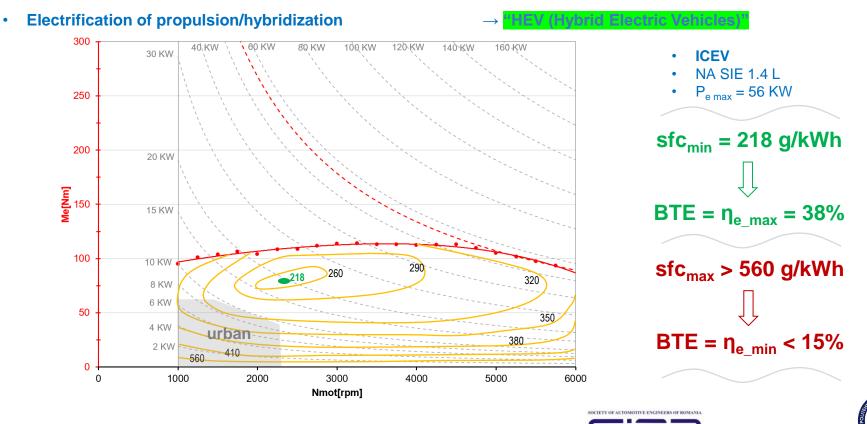
How?


Electrification of propulsion/hybridization

Source: FEV

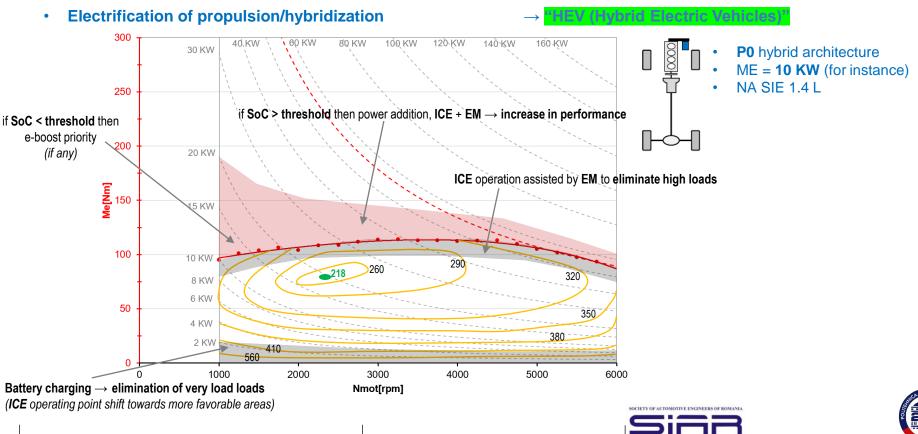
 \rightarrow

			Plug-In Hybrid / ReX
		Full Hybrid	External charging
	Mild Hybrid	e-drive within	e-drive within
	Limited E- Accessories	short range	limited range >20 miles
	El. Air Handling System	E-Accessories	E-Accessories
Micro Hybrid	ICE operating point shift	ICE operating point shift	ICE operating point shift
Limited recuperation	Ltd Torque Assist/ Recuperation	Torque Assist Recuperation	Torque Assist Recuperation
Stop-Start	Stop-Start	Stop-Start	Stop-Start
up to 5 kW	up to 25 kW	100 kW and more Electric Power	
12 / 24 V	48V + 12 / 24 V	High Voltage +	- 12 / 24 V Voltage


(Hybrid Electric Vehicles)

ADRIAN CLENCI, adrian.clenci@upb.ro

02.11.23


How?

41/57

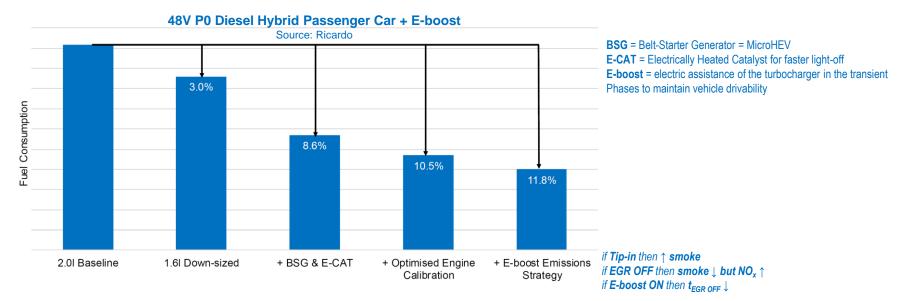
SOCIETATEA INCINERII OR DE AUTO

How?

42/57

SOCIETATEA INCINERII OR DE AUTOMORIJ E DE

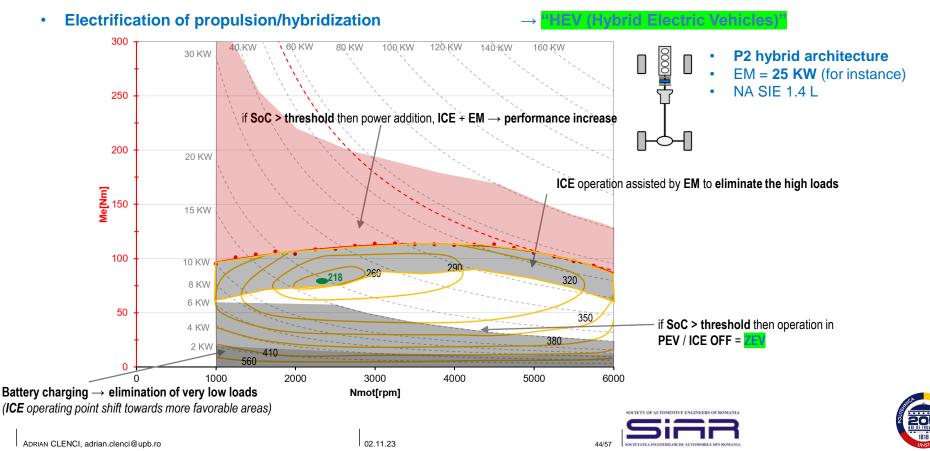
How?


Electrification of propulsion/hybridization

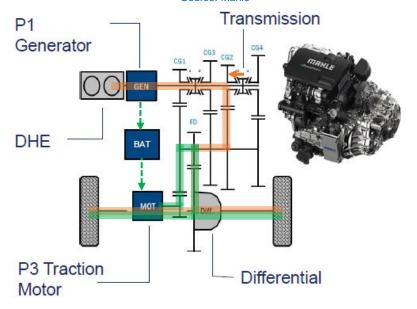
→ "HEV (Hybrid Electric Vehicles)"

SOCIETY OF AUTOMOTIVE ENCINEERS OF ROMAND

SOCIETATEA INGINERILOR DE AUTOMOBILE DIN ROMANLA


43/57

EM may assist ICE to compensate the downsizing but puts much more strain on the battery than the E-boost \rightarrow SoC \downarrow


How?

How?

Electrification of propulsion/hybridization

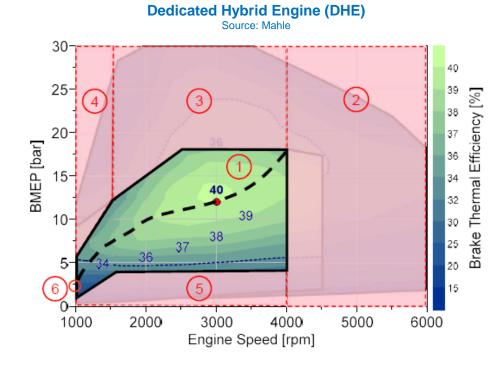
→ "HEV" via "DHE" + "DHT"

DHE:

 Very limited/narrow operating area (within the area of high values of BTE)

DHT:

- AMT; 1/2/4 gears w/o clutch; NEUTRAL is decoupling the DHE
- Electric generator mounted at the entrance to the transmission
- Allows direct drive in pure electric mode, i.e., BEV/PEV/ZEV


Mahle: "Dual mode hybrid – best of Parallel and Series hybrids plus direct eDrive for seamless torque delivery"

How?

Electrification of propulsion/hybridization

→ "HEV" via "DHE" (Dedicated Hybrid Engine")

Specifications DHE:

- ✓ 2 or 3 cylinders, fixed valve actuation
- ✓ Port-Fuel Injection (**PFI**), λ = 1 on all operating map + **MJI**[®]
- ✓ 950°C max. upstream the turbine
- ✓ Miller cycle + VCR + EGR
- ✓ SOHC + 2 valves/cyl.
- ✓ Reduced complexity
- ✓ Optimized for hybrid operation

Particularities:

- 1. Power control in a small area characterized by high efficiency
- 2. $N_{max} \downarrow \Rightarrow NVH$
- 3. Maximum load $\downarrow \Rightarrow$ Higher torque@low rpm no longer needed \Rightarrow NOx \downarrow + NVH
- 4. Reduced area of $N_{min} \downarrow \Rightarrow$ no idling
- 5. Elimination of low loads \Rightarrow no idling

OCIETY OF AUTOMOTIVE ENCINEERS OF ROMANI

SOCIETATEA INCINERII OR DE AUTOMORIJ E DIN ROMANI

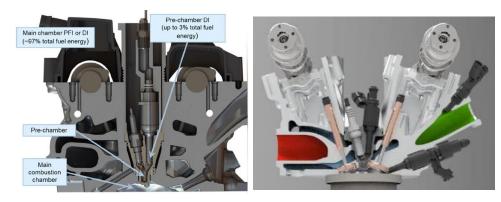
6. TWC heating-up

How?

Electrification of propulsion/hybridization

PFI Injector DI Injector DI Injector

Passive **Mahle** Jet Ignition (MJI[®])


(finalized development)

→ "HEV" via "DHE" (Dedicated Hybrid Engine)

Active **Mahle** Jet Ignition (MJI[®])

47/57

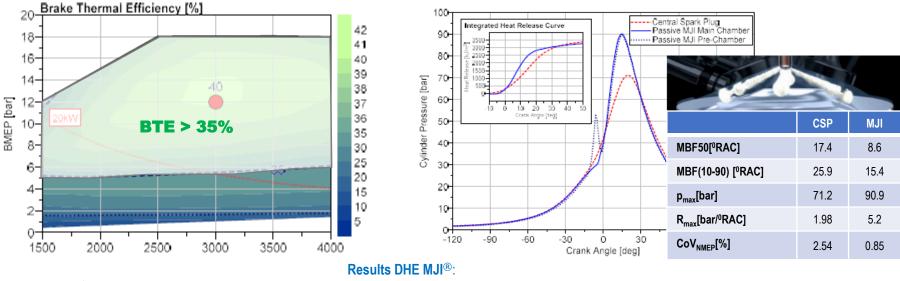
Ricardo Magma xEV

(in development) Allows the increasing of the lean limit $\rightarrow \lambda > 2 \Rightarrow \varepsilon \rightarrow 17 \Rightarrow \frac{1}{100} > 4272$ $Max(NO_x) \& Min(PN@23nm) @ \lambda = 1.2$

02.11.23

How?

Electrification of propulsion/hybridisation


→ "HEV" via "DHE" (Dedicated Hybrid Engine

SOCIETY OF AUTOMOTIVE ENGINEERS OF ROMANL

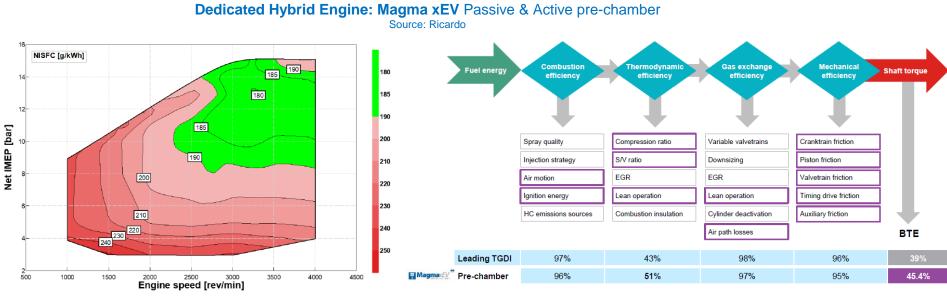
SOCIETATEA INGINERILOR DE AUTOMOBILE DIN ROMANL

48/57

Dedicated Hybrid Engine: Passive Mahle Jet Ignition (MJI®) – Passive pre-chamber Source: Mahle

✓ Combustion stability \uparrow +DoC ↓ + Reducing the knocking trend $\rightarrow \epsilon \uparrow \Rightarrow \eta_e > 40\%$ & (+ 25 KW/I) @ λ = 1 with low costs

How?


Electrification of propulsion/hybridization

"HEV" via "DHE" (Dedicated Hybrid Engine)

SOCIETY OF AUTOMOTIVE ENGINEERS OF ROMANL/

SOCIETATEA INGINERILOR DE AUTOMOBILE DIN ROMANIA

49/57

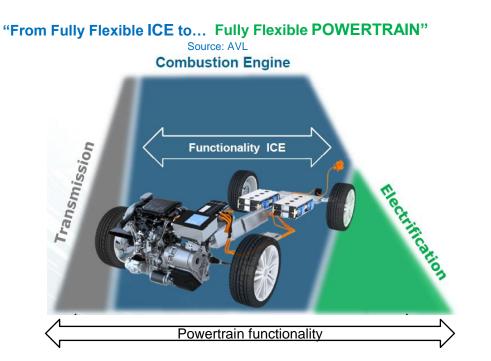
Particularities DHE Magma xEV Passive pre-chamber: \checkmark D = 76.5 mm, S = 109 mm \Rightarrow S/D = 1.42, ε =17, RON = 95, λ = 1.8, Miller EIVC \Rightarrow η = 45.4%

How?

Electrification of propulsion/hybridization

→ "HEV" via "DHE" (Dedicated Hybrid Engine

Dedicated Hybrid Engine: Nissan e-Power VC-T (Variable Compression – Turbocharged)



How?

• Electrification of propulsion/hybridisation

→ "HEV" via "DHE" (Dedicated Hybrid Engine

How?

• Electrification of propulsion/hybridization

the disappearance of some ICE technologies

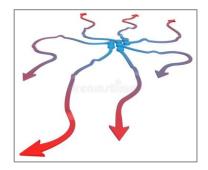
 \square Displacement on Demand (DoD) : except for the temperature rise in the EATS + CO2 \downarrow

- Continuous Variable Valve Lift (CVVL)
- Combined fuel injection, PFI (Port-Fuel Injection) & DI (Direct Injection) : except for the MJI®
- □ Mechanical drive of accessories (water pump, air conditioning compressor)

/ə'du/ - a-dieu

(PFI&GDI), DoD, CVVL, ViVL, Valvetronic, VVA...

STRUCTURE OF THE PRESENTATION



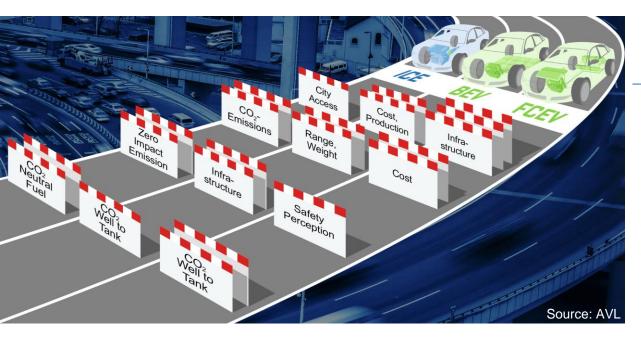
LEGISLATIVE CONTEXT

INTERNAL COMBUSTION ENGINE

CONCLUSIONS

One future

Many routes



SOCIETY OF AUTOMOTIVE ENGINEERS OF ROMANIA

SOCIETATEA INGINERILOR DE AUTOMOBILE DIN ROMANL

53/57

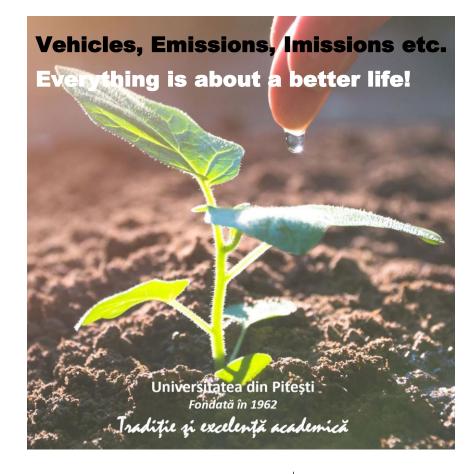
ADRIAN CLENCI, adrian.clenci@upb.ro

Dogma vs. Science

ICEV & BEV & FCEV

- different constraints...
- one future/goal:
 - Zero global net emission
 - Sustainable and affordable mobility

Renewable electric energy


ICEV & BEV & FCEV

- different constraints...
- one future/goal:

OCIETY OF AUTOMOTIVE ENCINEERS OF ROMAN

- Zero global net emission
- Sustainable and affordable mobility

ICEV & BEV & FCEV HEV

- different constraints...
- one future/goal:
 - Zero global net emission
 - Sustainable and affordable mobility

Individual road mobility (i.e., the passenger car) and sustainability: can they co-exist?

Iltra-clean and efficient ICEVs especially for long distances

ADRIAN CLENCI, adrian.clenci@upb.ro

02.11.23

REFERENCES

C. Menne, **FEV** – Near Zero Impact Pollutant Emissions and Zero CO2 – Is there a future for combustion engine powertrains, Invited lecture, SIAR, **2021.05.08** P. Kapus, AVL – Passenger Car Powertrain 4.x – Fuel consumption, emissions and cost, Mobex Webinar, 2020.06.02 M. Bunce, N. Peters, Mahle – Active Pre-chamber Ignition: CO2 reduction opportunities and application challenges, Mobex Webinar, 2021.08.18 A. Cooper, M. Basset, Mahle – A Compact Pre-chamber Ignition System for High=Efficiency Gasoline Engines, Mobex Webinar, 2020.11.18 M. Boni, Mahle – Mahle concept for future High Performance A1 ICE, Mobex Webinar, 2021.07.21 R. Osborne, A. Saroop, Ricardo – Dedicated Hybrid Engines and Sustainable Fuels: Steps Towards Net-Zero Propulsion, Mobex Webinar, 2021.07.20 J. Taylor, M. Basset, Mahle – Dedicated Hybrid Engines, Mobex Webinar, 2021.06.30 S. Williams, M. Grove, Mahle – Emissions Optimisation for Future Powertrain Development, Mobex Webinar, 2020.09.30 D. Pates, Mahle – Achieving future CO2 targets and maximizing commonality with a modular approach to hybridisation, Mobex Webinar, 2020.05.01 S. Edwards, A. Lane, **Ricardo** – Achieving emissions compliance and significant CO2 reduction in premium passenger cars, Mobex Webinar, **2021.04.22** P. Hopwood, B. Shalders, **Ricardo** – Euro 7 – New Emissions Limits. The challenges and Solutions, Mobex Webinar, **2020.04.30** J. Dalby, R. Gordon, Ricardo – Optimising hybrid vehicles in a world of increasing powertrain complexity, Mobex Webinar, 2018.11.07 R. Osborne, R. Sellers, Ricardo – How to achieve the next steps in engine efficiency for hybrid vehicles, Mobex Webinar, 2019.06.27 C. Speuser, C. Wilks, B. Vogt, FEV – Mazda 3 Skvactiv-X SPCCI & Infiniti OX50 VC-T. Benchmarkina, Mobex Webinar, 2021.01.19 https://www.chevron.com/operations/renewable-fuels-in-transportation/automotive https://www.upit.ro/ro/upit-pentru-comunitate/despre-schimbari-tehnologice-si-nu-numai

One future, many routes...

... to reach global net zero emissions

