COURSE SYLLABUS Test beds, measurement, and control basics 2022-2023

1. Program information

1.1	Higher education institution	University of Pitesti
1.2 Faculty Mechanics and Technology		Mechanics and Technology
1.3	Department	Automobiles and Transport
1.4 Field of studies Automotive Engineering		Automotive Engineering
1.5	1.5 Level of education Master	
1.6	Program / Qualification	Automotive Engineering for Sustainable Mobility

2. Discipline information

2.1	Name of discipline					Test beds, measurement, and control basics				
2.2	Instructor of the lecture/course activities					Adrian CLENCI				
2.3	Instructor of the lab activities					Adrian CLENCI				
2.4	Year of the studies I 2.5 Semester I					2.6 Type of evaluation $ E^1 $ 2.7 The discipline regime $ O, DAP^2 $				

3. Estimated total time

3.1 Number of hours per week	3	3.2	lecture	2	3.3	lab	1
3.4 Total hours of the Academic Syllabus	42	3.5	lecture	28	3.6	lab	14
Distribution of the time allocated to the individual study (= Nb. of credits x 25 - Total hours of the Academic syllabus = 4 x 25 - 42 = 58 hours)							ore
Study by handbook, course support, bibliography and notes							20
Additional documentation in the library, on specialized electronic platforms and in the field						15	
Preparation of seminars / laboratories, topics, reports, portfolios, essays						15	
Tutorial						4	
Examinations					4		
Other activities							

3.7	Total hours of individual study	58
3.8	Total hours per semester (= 3.4 + 3.7)	100
3.9	Number of credits allocated to the discipline	4

4. Prerequisites (where applicable)

4.1	Curriculum	Not applicable
4.2	Skills	Mathematics, Physics, Mechanics, Numerical methods, Electrotechnics, Electronics and automatic systems, Vehicle dynamics, Thermodynamics, Automobile's construction, Fuel economy and environment protection, Testing and homologation

5. Conditions (where applicable)

5.1	for the lecture/course	Classroom equipped with board, video projector, projection screen, computer
5.2	for the lab	Board, computer, lab equipments, test bench

6. Course goal(s)

6.1 The main goal of the discipline	Development of competences in the field of Automotive Engineering by transmitting to the students the notions related to test beds, measurement, and control basics
6.2 Specific goal(s)	At the end of this course, the student should be able to discuss on this particular subject: the architecture of the test beds used to homologate an automobile, their control and measurements

² O – compulsory; DAP – deepening discipline

¹ E – Exan

7. Contents

7.1.	Lecture/course	No. of hours	Teaching methods	Remarks Resources used
1	Introduction: automotive industry and sustainable mobility; passenger cars homologation/type approval; legislative regulations regarding chemical pollution and CO ₂ emission.	2	Lecture Exposure with	
2	Prerequisites: International System of Units (SI); notions about energy balance; operating area of engine/motor; engine/motor performance	2	support material Explanation	Board, sketches.
3	Engine test bench: general layout; types; subsystems and operation; tests and results	4	⊏хµіапашоп	tables, graphs,
4	Roller test bench (chassis dynamometer): general layout; types; subsystems and operation; tuning of the vehicle on the bench; road law; different tests and results	4	Description and exemplification The heuristic conversation The heuristic conversation The heuristic computer, internet	
5	Real Driving Emissions (RDE) via Portable Emissions Measurement Systems (PEMS): legislative packages; boundary conditions; validation criteria; pre-, main-, post-test; conformity factor	4		
6	Measurement: data acquisition systems; types of signals; characteristics of sensors/transducers (pressure, temperature, flow measurement, gas analysis)	8	Debating	
7	Control basics: ON-OFF, PWM, PID, open and closed loop	4	Case study	
	TOTAL HOURS	28		
7.2.	Lab	No. hours	Teaching methods	Remarks Resources used
1	Engine test bench: operation, control and measurement	6	Explanation Description and exemplification	board,
2	Roller test bench: operation, control and measurement (in collaboration with RTR)	2	The heuristic conversation	sketches, graphs, photos, models,
3	RDE tests via PEMS (in collaboration with RTR)	4	Debating Case study	computer, internet, lab equipment video projector
4	Lab closure	2	Exercising Experiment	viaeo projector

Minimal bibliography:

Clenci A – Test beds. Support material (171 slides)

Hughes, T.A. – Measurement and control basics, ISA, 2002

Martyr, A.J., Plint, M.A - Engine testing. Theory and practice, Elsevier, BH, 2007

Bonnick, A. - Automotive Science and Mathematics, Elsevier, BH, 2008

Galindo, E - Chassis Dynamometer Testing, SAE International, 2017

8. Corroboration the contents of the discipline with the expectations of the epistemic community representatives, professional associations and employers in the field related to the program

The skills acquired in this discipline allow the graduates to work in the field of automotive engineering: design, calibration, test, validation, and homologation of passenger cars. Being a specialized discipline, its purpose is training the students, especially for engineering centers (design, research, development, innovation).

TOTAL HOURS

14

9. Evaluation

Activity type	10.1 Evaluation Criteria	10.2 Evaluation methods	10.3 Percentage of the final grade		
	Active involvement during the lectures	Questions / answers. Weekly recording	10%		
10.4 Course	Good understanding of the treated subjects and the ability to analyze and synthesize	Written and oral exam	50%		
10.5 Lab	Active involvement during the activity throughout the semester	Questions / answers. Individual discussions. Weekly recording	20%		
10.6. Homework	Correct resolution. Quality of presentation	Oral presentation. Individual discussions	20%		
10.7 Minimum standard of performance	• knowledge of the architecture of the test beds presented, of the basics of measurement and				

Date (of filling) 18.09.2021 Instructor (lecture/course)

Adrian CLENCI, Professor

Instructor (lab)

Adrian CLENCI, Professor

Date (of approval) 29.09.2021

Director of supplying department Helene ŞUSTER, ş.l.

Director of beneficiary department **Helene ŞUSTER**, ş.l.