COURSE SYLLABUS

Transmission and alternative drivetrains. Hybrid vehicles

2022-2023

1. Program information

1.1	Higher education institution	University of Pitesti
1.2	Faculty	Mechanics and Technology
1.3	Department	Automobiles and Transport
1.4	Field of studies	Automotive Engineering
1.5	Level of education	Master
1.6	Program / Qualification	Automotive Engineering for Sustainable Mobility

2. Discipline information

2.1	Name of discipline	Transmission and alternative drivetrains. Hybrid vehicles				
2.2	Instructor of the lecture/course activities	Adrian CLENCI				
2.3	Instructor of the lab activities	Adrian CLENCI				
2.4	Year of the studies 1 2.5 Semester 1	2.6 Type of evaluation E ¹ 2.7 The discipline regime O, DAP ²				

3. Estimated total time

3.1 Number of hours per week	2	3.2	lecture	1	3.3	lab	1
3.4 Total hours of the Academic Syllabus		3.5	lecture	14	3.6	lab	14
Distribution of the time allocated to the in	dividual stu	ıdy ^{(= 1}	Nb. of credits x 25 – Total hou	rs of the Acad	emic syllabu	s = 4 x 25 – 28 = 72 hours)	ore
Study by handbook, course support, bibliogra	aphy and no	tes					20
Additional documentation in the library, on specialized electronic platforms and in the field					20		
Preparation of seminars / laboratories, topics, reports, portfolios, essays					20		
Tutorial 8					8		
Examinations					4		
Other activities							

3.7	Total hours of individual study	72
3.8	Total hours per semester (= 3.4 + 3.7)	100
3.9	Number of credits allocated to the discipline	4

4. Prerequisites (where applicable)

4.1	Curriculum	Not applicable
4.2	Skills	Mathematics, Physics, Mechanics, Numerical methods, Electrotechnics, Electronics and automatic systems, Vehicle dynamics, Thermodynamics, Automobile's construction, Internal Combustion Engine, Fuel economy and environment protection, Testing and homologation

5. Conditions (where applicable)

5.1	for the lecture/course	Classroom equipped with board, video projector, projection screen, computer
5.2	for the lab	Board, computer, lab equipments, test bench

6. Course goal(s)

6.1 The main goal of the discipline	Development of competences in the field of Automotive Engineering by transmitting to the students the notions related to alternative drivetrains	
6.2 Specific goal(s)	At the end of this course, the student should be able to discuss on this particular subject: the architecture of the classic, hybrid, and electric drivetrain	

² O – compulsory; DAP – deepening discipline

¹ E - Exam

7. Contents

7.1.	Contents Lecture/course	No. of hours	Teaching methods	Remarks Resources used
1	The automobile's evolution. General layout of the automobile. Automobile's performance: power, torque, consumption, pollution, driveability, reliability. Well-to-wheel vs. Tank-to-wheel vs. total life cycle analysis. Legislative regulations regarding chemical pollution and CO ₂ emission vs. client expectation	1		
2	The automobile's use. Longitudinal vehicle dynamics: balance of forces while driving. Effect of vehicle parameters on the energy balance (effects of mass, rolling, aerodynamics). Regenerative braking: energy recovery during braking	2	Lecture	
3	 The internal combustion engine vehicle (ICEV): the internal combustion engine and fuel storage (principles of operation and output characteristics) the transmission as an interface between the energy source (the internal combustion engine or the electric motor) and the driving wheels (the energy's user): why does ICEV needs a transmission/gearbox; discrete and non-discrete (continuous) variation of transmission ratio with and without power interruption; manual and automatic gearshift vs. automatic torque and speed conversion 	4	Exposure with support material Explanation Description and exemplification The heuristic	Board, sketches, tables, graphs, sheets, photos, models, video projector, computer,
4	The battery electric vehicle (BEV): electric machines and electrical storage: principles of operation and output characteristics the transmission as an interface between the energy source (the internal combustion engine or the electric motor) and the driving wheels (the energy's user): why does BEV uses a transmission/gearbox	3	conversation Debating Case study	internet
5	The hybrid electric vehicles (HEV): - serial hybridization - parallel hybridization - serial-parallel hybridization - power-split hybridization	4		
	TOTAL HOURS	14		
7.2.	Lab	No. hours	Teaching methods	Remarks Resources used
7.2. 1	Engine test bench vs. Roller test bench (chassis dyno) vs. Real Driving Emissions (RDE) via Portable Emissions Measurement Systems (PEMS)	_	methods Exposure with support material	Resources used
7.2. 1	Engine test bench vs. Roller test bench (chassis dyno) vs. Real Driving	hours	methods Exposure with support material Explanation Description and exemplification The heuristic conversation	Resources
1 2	Engine test bench vs. Roller test bench (chassis dyno) vs. Real Driving Emissions (RDE) via Portable Emissions Measurement Systems (PEMS) Simulation at the internal combustion engine test bench of the steady movement of a passenger car on the road. Various experimental determinations for this situation and post-processing of the experimental data to outline the energetic and ecologic performance according to speed and load. Hardware-in-the-Loop (HiL): virtual testing	hours 4 4 2	methods Exposure with support material Explanation Description and exemplification The heuristic conversation Debating	board, sketches, graphs, photos, models, computer, internet, lab equipment
1 2 3 4	Engine test bench vs. Roller test bench (chassis dyno) vs. Real Driving Emissions (RDE) via Portable Emissions Measurement Systems (PEMS) Simulation at the internal combustion engine test bench of the steady movement of a passenger car on the road. Various experimental determinations for this situation and post-processing of the experimental data to outline the energetic and ecologic performance according to speed and load. Hardware-in-the-Loop (HiL): virtual testing Architecture of a hybrid driveline test bench	4 4 2 2 2	methods Exposure with support material Explanation Description and exemplification The heuristic conversation Debating Case study Exercising	board, sketches, graphs, photos, models, computer, internet,
2	Engine test bench vs. Roller test bench (chassis dyno) vs. Real Driving Emissions (RDE) via Portable Emissions Measurement Systems (PEMS) Simulation at the internal combustion engine test bench of the steady movement of a passenger car on the road. Various experimental determinations for this situation and post-processing of the experimental data to outline the energetic and ecologic performance according to speed and load. Hardware-in-the-Loop (HiL): virtual testing	hours 4 4 2	methods Exposure with support material Explanation Description and exemplification The heuristic conversation Debating Case study	board, sketches, graphs, photos models, computer, internet, lab equipment

Minimal bibliography:

François Badin - Hybrid vehicles, IFP Energies nouvelles Publicatios, Editions Technip, Paris, 2013

Amtoni Szumanwski – Hybrid electric powertrain. Engineering and Technology, IGI Global, USA, 2013

Douglas R. Carroll - Energy efficiency of vehicles, SAE International, USA, 2020

Reza N. Jazar – Vehicle Dynamics. Tehory and Application, Springer, 2008

Rajezsh Rajamani - Vehicle Dynamics and control, Springer, 2006

Stephan Rinderkencht, Philippe Jardin, Arved Esser - Future powertrain technologies, MDPI, 2020

David A. Crolla – Automotive engineering: powertarin, chassis system and vehicle body, Elsevier, 2009

H. Naunheimer, B. Bertsche, J. Ryborz, W. Novak – Automotive transmissions. Fundamentals, selection, design and application, Springer. 2011

TOTAL HOURS

A.J. Martyr, M.A. Plint – Engine testing, Elsevier, 2007

Lino Guzzella, Antonio Sciarretta – Vehicle propulsion systems. Introduction to modeling and optimization, Springer, 2005

B.T. Fijalkowski – Automotive mechatronics: operational and practical issues, Springer, 2011

8. Corroboration the contents of the discipline with the expectations of the epistemic community representatives, professional associations and employers in the field related to the program

The skills acquired in this discipline allow the graduates to work in the field of automotive engineering: design, calibration, test, validation, and homologation of passenger hybrid cars. Being a specialized discipline, its purpose is training the students, especially for engineering centers (design, research, development, innovation).

9. Evaluation

Activity type	10.1 Evaluation Criteria	10.2 Evaluation methods	10.3 Percentage of the final grade		
	Active involvement during the lectures	Questions / answers. Weekly recording	10%		
10.4 Course	Good understanding of the treated subjects and the ability to analyze and synthesize	Written and oral exam	50%		
10.5 Lab	Active involvement during the activity throughout the semester	Questions / answers. Individual discussions. Weekly recording	20%		
10.6. Homework	Correct resolution. Quality of presentation	Oral presentation. Individual discussions	20%		
10.7 Minimum standard of performance	handling of the units of measure involved in the specific parameters of the course knowledge of the architecture of the classic, hybrid and electric drivetrains				

Date (of filling) 18.09.2022 Instructor (lecture/course)

Adrian CLENCI, Professor

Instructor (lab)

Adrian CLENCI, Professor

Date (of approval) 29.09.2022

Director of supplying department **Helene ŞUSTER**, ş.l.

Director of beneficiary department **Helene ŞUSTER**, ş.l.